Application of rainbow schlieren deflectometry for concentration measurements in an axisymmetric helium jet

Application of rainbow schlieren deflectometry for concentration measurements in an axisymmetric...  The rainbow schlieren deflectometry technique was used to measure oxygen concentrations in a laminar, isothermal helium jet discharged vertically into ambient air. The concentration distributions were inferred from the color schlieren image by taking into consideration the sampling interval and noise in measurements, especially near the jet center. Excellent quantitative agreement was reached between measurements from schlieren and a continuous sampling probe. This work demonstrates the capability of the schlieren technique for providing accurate, spatially-resolved, nonintrusive, full-field of view measurements of species concentration in an isothermal binary system. Because the basic quantity measured is the refractive index, the present schlieren technique can be extended for quantitative measurements of other scalar flow properties related to the refractive index. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Application of rainbow schlieren deflectometry for concentration measurements in an axisymmetric helium jet

Loading next page...
 
/lp/springer_journal/application-of-rainbow-schlieren-deflectometry-for-concentration-Tg4GNOJufR
Publisher
Springer-Verlag
Copyright
Copyright © 1998 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050211
Publisher site
See Article on Publisher Site

Abstract

 The rainbow schlieren deflectometry technique was used to measure oxygen concentrations in a laminar, isothermal helium jet discharged vertically into ambient air. The concentration distributions were inferred from the color schlieren image by taking into consideration the sampling interval and noise in measurements, especially near the jet center. Excellent quantitative agreement was reached between measurements from schlieren and a continuous sampling probe. This work demonstrates the capability of the schlieren technique for providing accurate, spatially-resolved, nonintrusive, full-field of view measurements of species concentration in an isothermal binary system. Because the basic quantity measured is the refractive index, the present schlieren technique can be extended for quantitative measurements of other scalar flow properties related to the refractive index.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 17, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off