Application of Quasi-Steady-State Methods to Nonlinear Models of Intracellular Transport by Molecular Motors

Application of Quasi-Steady-State Methods to Nonlinear Models of Intracellular Transport by... Molecular motors such as kinesin and dynein are responsible for transporting material along microtubule networks in cells. In many contexts, motor dynamics can be modelled by a system of reaction–advection–diffusion partial differential equations (PDEs). Recently, quasi-steady-state (QSS) methods have been applied to models with linear reactions to approximate the behaviour of the full PDE system. Here, we extend this QSS reduction methodology to certain nonlinear reaction models. The QSS method relies on the assumption that the nonlinear binding and unbinding interactions of the cellular motors occur on a faster timescale than the spatial diffusion and advection processes. The full system dynamics are shown to be well approximated by the dynamics on the slow manifold. The slow manifold is parametrized by a single scalar quantity that satisfies a scalar nonlinear PDE, called the QSS PDE. We apply the QSS method to several specific nonlinear models for the binding and unbinding of molecular motors, and we use the resulting approximations to draw conclusions regarding the parameter dependence of the spatial distribution of motors for these models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of Mathematical Biology Springer Journals

Application of Quasi-Steady-State Methods to Nonlinear Models of Intracellular Transport by Molecular Motors

Loading next page...
 
/lp/springer_journal/application-of-quasi-steady-state-methods-to-nonlinear-models-of-GftkinFWn0
Publisher
Springer US
Copyright
Copyright © 2017 by Society for Mathematical Biology
Subject
Mathematics; Mathematical and Computational Biology; Life Sciences, general; Cell Biology
ISSN
0092-8240
eISSN
1522-9602
D.O.I.
10.1007/s11538-017-0314-1
Publisher site
See Article on Publisher Site

Abstract

Molecular motors such as kinesin and dynein are responsible for transporting material along microtubule networks in cells. In many contexts, motor dynamics can be modelled by a system of reaction–advection–diffusion partial differential equations (PDEs). Recently, quasi-steady-state (QSS) methods have been applied to models with linear reactions to approximate the behaviour of the full PDE system. Here, we extend this QSS reduction methodology to certain nonlinear reaction models. The QSS method relies on the assumption that the nonlinear binding and unbinding interactions of the cellular motors occur on a faster timescale than the spatial diffusion and advection processes. The full system dynamics are shown to be well approximated by the dynamics on the slow manifold. The slow manifold is parametrized by a single scalar quantity that satisfies a scalar nonlinear PDE, called the QSS PDE. We apply the QSS method to several specific nonlinear models for the binding and unbinding of molecular motors, and we use the resulting approximations to draw conclusions regarding the parameter dependence of the spatial distribution of motors for these models.

Journal

Bulletin of Mathematical BiologySpringer Journals

Published: Jul 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off