Application of photobleaching molecular tagging velocimetry to turbulent bubbly flow in a square duct

Application of photobleaching molecular tagging velocimetry to turbulent bubbly flow in a square... To evaluate turbulence energy budget in bubbly flows, an image processing method in a photobleaching molecular tagging velocimetry is improved for accurate evaluation of velocity gradients. Turbulence properties in single-phase and two-phase dilute-bubbly flows in a square duct are measured using the improved method. As a result, the following conclusions are obtained: (1) The axial velocity and axial turbulent intensity measured by the present method agree well with those measured by laser Doppler velocimetry not only for the single-phase flow but also for the dilute-bubbly flow. (2) The present method can measure velocity components and velocity gradients in the vicinity of the wall, and therefore the present method is of great use in understanding the mechanism of turbulence generation and dissipation near the wall. (3) The present method can provide detailed information on turbulence structure such as turbulence kinetic energy budget. (4) Bubbles tend to increase not only the turbulence production but also the turbulence dissipation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Application of photobleaching molecular tagging velocimetry to turbulent bubbly flow in a square duct

Loading next page...
 
/lp/springer_journal/application-of-photobleaching-molecular-tagging-velocimetry-to-0IKA3YjxNK
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0690-x
Publisher site
See Article on Publisher Site

Abstract

To evaluate turbulence energy budget in bubbly flows, an image processing method in a photobleaching molecular tagging velocimetry is improved for accurate evaluation of velocity gradients. Turbulence properties in single-phase and two-phase dilute-bubbly flows in a square duct are measured using the improved method. As a result, the following conclusions are obtained: (1) The axial velocity and axial turbulent intensity measured by the present method agree well with those measured by laser Doppler velocimetry not only for the single-phase flow but also for the dilute-bubbly flow. (2) The present method can measure velocity components and velocity gradients in the vicinity of the wall, and therefore the present method is of great use in understanding the mechanism of turbulence generation and dissipation near the wall. (3) The present method can provide detailed information on turbulence structure such as turbulence kinetic energy budget. (4) Bubbles tend to increase not only the turbulence production but also the turbulence dissipation.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 7, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off