Application of particle swarm optimization and response surface methodology for machining parameters optimization of aluminium matrix composites in milling operation

Application of particle swarm optimization and response surface methodology for machining... Face milling is extensively used machining operation to generate the various components. Usually the selection of the process parameters are incorporated by trial and error method, literature survey and the machining hand book. This kind of selection of process parameters turns out to be very tedious and time-consuming. In order to overcome this there is a need to develop a technique that could be able to find the optimal process parameters for the desired responses in machining. The present paper illustrates an application of response surface methodology (RSM) and particle swarm optimization (PSO) technique for optimizing the process parameters of milling and provides a comparison study among desirability and PSO techniques. The experimental investigations are carried out on metal matrix composite material AA6061-4.5%Cu-5%SiCp to study the effect of process parameters such as feed rate, spindle speed and depth of cut on the cutting force, surface roughness and power consumption. The process parameters are analyzed using RSM central composite face-centered design to study the relationship between the input and output responses. The interaction between the process parameters was identified using the multiple regression technique, which showed that spindle speed has major contribution on all the responses followed by feed rate and depth of cut. It has shown good prediction for all the responses. The optimized process parameters are acquired through multi-response optimization using the desirability approach and the PSO technique. The results obtained from PSO are closer to the values of the desirability function approach and achieved significant improvement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Brazilian Society of Mechanical Sciences and Engineering Springer Journals

Application of particle swarm optimization and response surface methodology for machining parameters optimization of aluminium matrix composites in milling operation

Loading next page...
 
/lp/springer_journal/application-of-particle-swarm-optimization-and-response-surface-sfzAI0YVpo
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by The Brazilian Society of Mechanical Sciences and Engineering
Subject
Engineering; Mechanical Engineering
ISSN
1678-5878
eISSN
1806-3691
D.O.I.
10.1007/s40430-016-0675-7
Publisher site
See Article on Publisher Site

Abstract

Face milling is extensively used machining operation to generate the various components. Usually the selection of the process parameters are incorporated by trial and error method, literature survey and the machining hand book. This kind of selection of process parameters turns out to be very tedious and time-consuming. In order to overcome this there is a need to develop a technique that could be able to find the optimal process parameters for the desired responses in machining. The present paper illustrates an application of response surface methodology (RSM) and particle swarm optimization (PSO) technique for optimizing the process parameters of milling and provides a comparison study among desirability and PSO techniques. The experimental investigations are carried out on metal matrix composite material AA6061-4.5%Cu-5%SiCp to study the effect of process parameters such as feed rate, spindle speed and depth of cut on the cutting force, surface roughness and power consumption. The process parameters are analyzed using RSM central composite face-centered design to study the relationship between the input and output responses. The interaction between the process parameters was identified using the multiple regression technique, which showed that spindle speed has major contribution on all the responses followed by feed rate and depth of cut. It has shown good prediction for all the responses. The optimized process parameters are acquired through multi-response optimization using the desirability approach and the PSO technique. The results obtained from PSO are closer to the values of the desirability function approach and achieved significant improvement.

Journal

Journal of the Brazilian Society of Mechanical Sciences and EngineeringSpringer Journals

Published: Nov 18, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off