Application of particle image velocimetry to a transonic centrifugal compressor

Application of particle image velocimetry to a transonic centrifugal compressor As part of an ongoing research project the performance and internal flow field of a high-pressure ratio centrifugal compressor is being investigated. Based on previous, primarily, point-wise laser-optical measurements the compressor was redesigned and resulted in an improved impeller and diffuser with a single-stage pressure ratio of 6:1 at 50,000 rpm. Current research activities involve the use of particle image velocimetry (PIV) to analyze and further improve the understanding of the complex flow phenomena inside the vaned diffuser given the capability of PIV of capturing spatial structures. The study includes phase-resolved measurements of the flow inside a diffuser vane passage with respect to the impeller blade position. Both, instantaneous and phase-averaged velocity fields are presented. The flow field results obtained by PIV are to be used for future validation of the related CFD calculations, which in turn are expected to lead to further improvements in compressor performance. In addition, the potential of stereo PIV for this type of turbomachinery application could be successfully demonstrated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Application of particle image velocimetry to a transonic centrifugal compressor

Loading next page...
 
/lp/springer_journal/application-of-particle-image-velocimetry-to-a-transonic-centrifugal-GLqK086PXn
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0279-1
Publisher site
See Article on Publisher Site

Abstract

As part of an ongoing research project the performance and internal flow field of a high-pressure ratio centrifugal compressor is being investigated. Based on previous, primarily, point-wise laser-optical measurements the compressor was redesigned and resulted in an improved impeller and diffuser with a single-stage pressure ratio of 6:1 at 50,000 rpm. Current research activities involve the use of particle image velocimetry (PIV) to analyze and further improve the understanding of the complex flow phenomena inside the vaned diffuser given the capability of PIV of capturing spatial structures. The study includes phase-resolved measurements of the flow inside a diffuser vane passage with respect to the impeller blade position. Both, instantaneous and phase-averaged velocity fields are presented. The flow field results obtained by PIV are to be used for future validation of the related CFD calculations, which in turn are expected to lead to further improvements in compressor performance. In addition, the potential of stereo PIV for this type of turbomachinery application could be successfully demonstrated.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 24, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off