Application of novel nanostructured dinitropyrazine molten salt catalyst for the synthesis of sulfanylpyridines via anomeric based oxidation

Application of novel nanostructured dinitropyrazine molten salt catalyst for the synthesis of... 1,4-Dinitropyrazine-1,4-diium trinitromethanide {[1,4-pyrazine-NO2][C(NO2)3]2} as a novel nanostructured molten salt (NMS) catalyzed the synthesis of 2-amino-3,5-dicarbonitrile-6-sulfanylpyridine derivatives via the one-pot three-component condensation reaction between several aromatic aldehyde, malononitrile and benzyl mercaptan at room temperature under solvent-free conditions. The synthesized NMS catalyst was fully characterized by FTIR, 1H NMR, 13CNMR, mass, thermal gravimetric, X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy analysis. The major advantages of described methodology are mildness, ease of separation, good yields and short reaction times. A rational mechanism was suggested for the final step of the 2-amino-3,5-dicarbonitrile-6-sulfanylpyridines synthesis. We think that the proposed mechanism has potential for entering into the graduate text book in the future. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Iranian Chemical Society Springer Journals

Application of novel nanostructured dinitropyrazine molten salt catalyst for the synthesis of sulfanylpyridines via anomeric based oxidation

Loading next page...
 
/lp/springer_journal/application-of-novel-nanostructured-dinitropyrazine-molten-salt-TDakp0ujes
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Iranian Chemical Society
Subject
Chemistry; Analytical Chemistry; Inorganic Chemistry; Physical Chemistry; Biochemistry, general; Organic Chemistry
ISSN
1735-207X
eISSN
1735-2428
D.O.I.
10.1007/s13738-017-1123-z
Publisher site
See Article on Publisher Site

Abstract

1,4-Dinitropyrazine-1,4-diium trinitromethanide {[1,4-pyrazine-NO2][C(NO2)3]2} as a novel nanostructured molten salt (NMS) catalyzed the synthesis of 2-amino-3,5-dicarbonitrile-6-sulfanylpyridine derivatives via the one-pot three-component condensation reaction between several aromatic aldehyde, malononitrile and benzyl mercaptan at room temperature under solvent-free conditions. The synthesized NMS catalyst was fully characterized by FTIR, 1H NMR, 13CNMR, mass, thermal gravimetric, X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy analysis. The major advantages of described methodology are mildness, ease of separation, good yields and short reaction times. A rational mechanism was suggested for the final step of the 2-amino-3,5-dicarbonitrile-6-sulfanylpyridines synthesis. We think that the proposed mechanism has potential for entering into the graduate text book in the future.

Journal

Journal of the Iranian Chemical SocietySpringer Journals

Published: Apr 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off