Application of laser ignition on laminar flame front investigation

Application of laser ignition on laminar flame front investigation The first stages of laser-induced spark ignition were investigated as a function of time. Experiments were conducted using a premixed laminar CH4/air burner. Laser-induced breakdown was achieved by focusing a 532-nm nanosecond pulse from a Q-switched Nd:YAG laser. An anti-reflection coated lens with a focal length of 100 mm was used. The results obtained from an intensified high-speed and PIV CCD camera and a Cassegrain optics system coupled to an ICCD spectrometer provided information about the formation of laser-induced plasma and its transition to a flame kernel and a self-sustaining flame. The localization of the kernel and its time development were reproducible. Two types of flame fronts develop: one that expands against the flow direction, and one that moves with the flow. The initial flame expansion along the laser axis is asymmetric because of the shape of the plasma, different ionization levels inside the plasma, and the shock-wave expansion. Development of the fast flame occurs behind the shock wave induced by the plasma. This is important when laser ignition is used as a flame holder. An ICCD spectrometer coupled to an optical fiber permitted chemiluminescence visualization. The spectrum obtained during the plasma and flame kernel formation defined different stages in flame formation. The results obtained with these two optical techniques were synchronized to obtain the temporal resolution of the flame kernel evolution. Laser-induced ignition of a very lean mixture can be controlled to provide local heat release and extinction in a flame. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Application of laser ignition on laminar flame front investigation

Loading next page...
 
/lp/springer_journal/application-of-laser-ignition-on-laminar-flame-front-investigation-rqng1cWfHs
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-003-0670-5
Publisher site
See Article on Publisher Site

Abstract

The first stages of laser-induced spark ignition were investigated as a function of time. Experiments were conducted using a premixed laminar CH4/air burner. Laser-induced breakdown was achieved by focusing a 532-nm nanosecond pulse from a Q-switched Nd:YAG laser. An anti-reflection coated lens with a focal length of 100 mm was used. The results obtained from an intensified high-speed and PIV CCD camera and a Cassegrain optics system coupled to an ICCD spectrometer provided information about the formation of laser-induced plasma and its transition to a flame kernel and a self-sustaining flame. The localization of the kernel and its time development were reproducible. Two types of flame fronts develop: one that expands against the flow direction, and one that moves with the flow. The initial flame expansion along the laser axis is asymmetric because of the shape of the plasma, different ionization levels inside the plasma, and the shock-wave expansion. Development of the fast flame occurs behind the shock wave induced by the plasma. This is important when laser ignition is used as a flame holder. An ICCD spectrometer coupled to an optical fiber permitted chemiluminescence visualization. The spectrum obtained during the plasma and flame kernel formation defined different stages in flame formation. The results obtained with these two optical techniques were synchronized to obtain the temporal resolution of the flame kernel evolution. Laser-induced ignition of a very lean mixture can be controlled to provide local heat release and extinction in a flame.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 22, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off