Application of fluorescence spectroscopy and chemometric models for the detection of vegetable oil adulterants in Maltese virgin olive oils

Application of fluorescence spectroscopy and chemometric models for the detection of vegetable... Fluorescence spectrometry, combined with principle component analysis, partial least-squares regression (PLSR) and artificial neural network (ANN), was applied for the analysis of Maltese extra virgin olive oil (EVOO) adulterated by blending with vegetable oil (corn oil, soybean oil, linseed oil, or sunflower oil). The novel results showed that adjusted PLSR models based on synchronised spectra for detecting the % amount of EVOO in vegetable oil blends had a lower root mean square error (0.02–6.27%) and higher R2 (0.983–1.000) value than those observed when using PLSR on the whole spectrum. This study also highlights the use of ANN as an alternative chemometric tool for the detection of olive oil adulteration. The performance of the model generated by the ANN is highly dependent both on the type of data input and the mode of cross validation; for spectral data which had a variable importance plot value > 0.8 the excluded row cross validation was more appropriate while for complete spectral analysis k-fold or CV-10 was more appropriate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Food Science and Technology Springer Journals

Application of fluorescence spectroscopy and chemometric models for the detection of vegetable oil adulterants in Maltese virgin olive oils

Loading next page...
 
/lp/springer_journal/application-of-fluorescence-spectroscopy-and-chemometric-models-for-rAGKq05j01
Publisher
Springer India
Copyright
Copyright © 2018 by Association of Food Scientists & Technologists (India)
Subject
Chemistry; Food Science; Nutrition; Chemistry/Food Science, general
ISSN
0022-1155
eISSN
0975-8402
D.O.I.
10.1007/s13197-018-3131-0
Publisher site
See Article on Publisher Site

Abstract

Fluorescence spectrometry, combined with principle component analysis, partial least-squares regression (PLSR) and artificial neural network (ANN), was applied for the analysis of Maltese extra virgin olive oil (EVOO) adulterated by blending with vegetable oil (corn oil, soybean oil, linseed oil, or sunflower oil). The novel results showed that adjusted PLSR models based on synchronised spectra for detecting the % amount of EVOO in vegetable oil blends had a lower root mean square error (0.02–6.27%) and higher R2 (0.983–1.000) value than those observed when using PLSR on the whole spectrum. This study also highlights the use of ANN as an alternative chemometric tool for the detection of olive oil adulteration. The performance of the model generated by the ANN is highly dependent both on the type of data input and the mode of cross validation; for spectral data which had a variable importance plot value > 0.8 the excluded row cross validation was more appropriate while for complete spectral analysis k-fold or CV-10 was more appropriate.

Journal

Journal of Food Science and TechnologySpringer Journals

Published: Mar 24, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off