Applicability of upflow anaerobic sludge blanket and dynamic membrane-coupled process for the treatment of municipal wastewater

Applicability of upflow anaerobic sludge blanket and dynamic membrane-coupled process for the... This study investigated the applicability of dynamic membrane filter (DMF) technology in an upflow anaerobic sludge blanket (UASB) and DMF-coupled process for the treatment of municipal wastewater. The overall treatment performance and effects of hydraulic retention time (HRT), operating flux, and mesh pore size on the UASB + DMF were assessed. The UASB + DMF-coupled process demonstrated removal efficiencies of over 64 and 86% for TCOD and TSS, respectively. The effects of filtration flux and support mesh pore size were investigated and it was found that while there was little impact on the treatment performance, a 67% increase in operating flux resulted in a 25% increase in fouling rate. Similarly, with smaller mesh pore size (Mesh 500 with pore size of 28 μm) the fouling rate increased by fourfold as compared to Mesh 300 (pore size of 46 μm). In consideration of the operation duration and contaminant removal, the DMF with Mesh 300 support layer and operating at 100 L/m2-h was the most efficient configuration for treating the effluent of the UASB operated with a HRT of 6 h. Microbial analyses of the foulant layer revealed changes in relative abundance as compared to the bulk sludge, particularly with the hydrogenotrophic methanogens completely outcompeting the acetoclastic methanogens. Overall, the coupled process improved the system robustness and reduced variability of the treated effluent. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Microbiology and Biotechnology Springer Journals

Applicability of upflow anaerobic sludge blanket and dynamic membrane-coupled process for the treatment of municipal wastewater

Loading next page...
 
/lp/springer_journal/applicability-of-upflow-anaerobic-sludge-blanket-and-dynamic-membrane-0PfRa9kzRA
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Microbiology; Microbial Genetics and Genomics; Biotechnology
ISSN
0175-7598
eISSN
1432-0614
D.O.I.
10.1007/s00253-017-8358-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial