Apple S locus region represents a large cluster of related, polymorphic and pollen-specific F-box genes

Apple S locus region represents a large cluster of related, polymorphic and pollen-specific F-box... Gametophytic self-incompatibility (GSI) of Rosaceae, Solanaceae and Plantaginaceae is controlled by a complex S locus that encodes separate proteins for pistil and pollen specificities, extracellular ribonucleases (S-RNases) and F-box proteins SFB/SLF, respectively. SFB/SLFs of Prunus (subfamily Prunoideae of Rosaceae), Solanaceae and Plantaginaceae are single copy in each S haplotype, while recently identified pollen S candidates SFBBs of subfamily Maloideae of Rosaceae, apple and Japanese pear, are multiple; two and three related SFBBs were isolated from each S haplotype of apple and Japanese pear, respectively. Here, we show that apple (Malus × domestica) SFBBs constitute a gene family that is much larger than initially thought. Twenty additional SFBB-like genes/alleles were isolated by screening of a BAC library derived from S 3 S 9 genotype, and tentatively named MdFBX1-20. All but one MdFBX showed S haplotype-specific polymorphisms. All the polymorphic MdFBXs were completely linked to S-RNase in 239 segregants. In addition, FISH revealed that the monomorphic gene MdFBX11 is also located near S-RNase, and the S locus is located in a subtelomeric region of a chromosome and is not close to the centromere. All MdFBXs were specifically expressed in pollen, except for a pseudogene MdFBX4 that showed no expression in any organs analyzed. Phylogenetic analysis revealed that the closest relatives of most MdFBXs were from a different S haplotype, suggesting that proliferation of MdSFBB/FBXs predates diversification of the S haplotypes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Apple S locus region represents a large cluster of related, polymorphic and pollen-specific F-box genes

Loading next page...
 
/lp/springer_journal/apple-s-locus-region-represents-a-large-cluster-of-related-polymorphic-IR2Ihu0gdi
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-010-9662-z
Publisher site
See Article on Publisher Site

Abstract

Gametophytic self-incompatibility (GSI) of Rosaceae, Solanaceae and Plantaginaceae is controlled by a complex S locus that encodes separate proteins for pistil and pollen specificities, extracellular ribonucleases (S-RNases) and F-box proteins SFB/SLF, respectively. SFB/SLFs of Prunus (subfamily Prunoideae of Rosaceae), Solanaceae and Plantaginaceae are single copy in each S haplotype, while recently identified pollen S candidates SFBBs of subfamily Maloideae of Rosaceae, apple and Japanese pear, are multiple; two and three related SFBBs were isolated from each S haplotype of apple and Japanese pear, respectively. Here, we show that apple (Malus × domestica) SFBBs constitute a gene family that is much larger than initially thought. Twenty additional SFBB-like genes/alleles were isolated by screening of a BAC library derived from S 3 S 9 genotype, and tentatively named MdFBX1-20. All but one MdFBX showed S haplotype-specific polymorphisms. All the polymorphic MdFBXs were completely linked to S-RNase in 239 segregants. In addition, FISH revealed that the monomorphic gene MdFBX11 is also located near S-RNase, and the S locus is located in a subtelomeric region of a chromosome and is not close to the centromere. All MdFBXs were specifically expressed in pollen, except for a pseudogene MdFBX4 that showed no expression in any organs analyzed. Phylogenetic analysis revealed that the closest relatives of most MdFBXs were from a different S haplotype, suggesting that proliferation of MdSFBB/FBXs predates diversification of the S haplotypes.

Journal

Plant Molecular BiologySpringer Journals

Published: Jul 15, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off