Apple ACC-oxidase and polygalacturonase: ripening-specific gene expression and promoter analysis in transgenic tomato

Apple ACC-oxidase and polygalacturonase: ripening-specific gene expression and promoter analysis... Levels of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and polygalacturonase (PG) mRNAs were characterized during ripening of Royal Gala, Braeburn and Granny Smith apples. Both ACC-oxidase and PG mRNAs were up-regulated in ripening fruit of all three cultivars. Expression in Royal Gala was detected earlier than in Braeburn and Granny Smith, relative to internal ethylene concentration. Genomic clones corresponding to the ACC-oxidase and PG mRNAs expressed in ripe apple fruit were isolated and ca. 2 kb of each promoter was sequenced. The start point of transcription in each gene was mapped by primer extension, and sequences homologous to elements in other ethylene-responsive or PG promoters were identified. The fruit specificity of the apple ACC-oxidase and PG promoters was investigated in transgenic tomato plants using a nested set of promoter fragments fused to the β-glucuronidase (gusA) reporter gene. For the ACC-oxidase gene, 450 bp of 5′ promoter sequence was sufficient to drive GUS expression, although this expression was not specific to ripening fruit. Larger fragments of 1966 and 1159 bp showed both fruit and ripening specificity. For the PG gene, promoter fragments of 1460 and 532 bp conferred ripening-specific expression in transgenic tomato fruit. However GUS expression was down-regulated by 2356 bp of promoter, suggesting the presence of a negative regulatory element between positions -1460 and -2356. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Apple ACC-oxidase and polygalacturonase: ripening-specific gene expression and promoter analysis in transgenic tomato

Loading next page...
 
/lp/springer_journal/apple-acc-oxidase-and-polygalacturonase-ripening-specific-gene-8SY9scC01H
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006065926397
Publisher site
See Article on Publisher Site

Abstract

Levels of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and polygalacturonase (PG) mRNAs were characterized during ripening of Royal Gala, Braeburn and Granny Smith apples. Both ACC-oxidase and PG mRNAs were up-regulated in ripening fruit of all three cultivars. Expression in Royal Gala was detected earlier than in Braeburn and Granny Smith, relative to internal ethylene concentration. Genomic clones corresponding to the ACC-oxidase and PG mRNAs expressed in ripe apple fruit were isolated and ca. 2 kb of each promoter was sequenced. The start point of transcription in each gene was mapped by primer extension, and sequences homologous to elements in other ethylene-responsive or PG promoters were identified. The fruit specificity of the apple ACC-oxidase and PG promoters was investigated in transgenic tomato plants using a nested set of promoter fragments fused to the β-glucuronidase (gusA) reporter gene. For the ACC-oxidase gene, 450 bp of 5′ promoter sequence was sufficient to drive GUS expression, although this expression was not specific to ripening fruit. Larger fragments of 1966 and 1159 bp showed both fruit and ripening specificity. For the PG gene, promoter fragments of 1460 and 532 bp conferred ripening-specific expression in transgenic tomato fruit. However GUS expression was down-regulated by 2356 bp of promoter, suggesting the presence of a negative regulatory element between positions -1460 and -2356.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off