Apical Na+-Cl− Symport in Rabbit Gallbladder Epithelium: A Thiazide-Sensitive Cotransporter (TSC)

Apical Na+-Cl− Symport in Rabbit Gallbladder Epithelium: A Thiazide-Sensitive Cotransporter (TSC) Cl− apically enters the epithelium of rabbit gallbladder by a Na+-Cl− symport, sensitive to hydrochlorothiazide (HCTZ). Since HCTZ also activates an apical SITS-sensitive Cl− conductance (G Cl ), the symport inhibition might be merely due to a short circuit of the symport by G Cl rather than to a direct action of HCTZ on the symporter. To examine whether the symport is directly inhibited by HCTZ and whether the symporter belongs to the family of thiazide-sensitive cotransporters (TSC), radiochemical measurements of the apical Cl− uptake, electrophysiological determinations of intracellular Cl− and Na+ activities (a i,Cl and a i,Na ) with selective theta microelectrodes and molecular biology methods were used. The 36Cl− uptake proved to be a measurement of the apical unidirectional Cl− influx (J mc ) and of the symport only (without backflux components), with measuring times of 45 sec under all experiment conditions; its inhibition by HCTZ was unaffected by G Cl activation or abolition. After HCTZ treatment the decrease in a i,Cl (measured as the initial rate or in 3 min) was larger than the decrease in a i,Na . The difference was reduced to one third in a group of epithelia in which the elicited G Cl was reduced to one third; moreover it was abolished in any case when G Cl was abolished with 10−4 m SITS. The SITS-insensitive rate of a i,Cl decrease was equal to that of the a i,Na decrease in any case. Thus the a i,Cl decrease displays a component dependent on G Cl activation and a second component dependent on symport inhibition. Using the RT-PCR technique a cDNA fragment was obtained that was 99% identical to the corresponding region of the rabbit renal TSC isoform. The results indicate that in rabbit gallbladder epithelium HCTZ displays a dual action, namely G Cl activation and Na+-Cl− symport inhibition. This Na+-Cl− symporter is the first TSC found to be functionally expressed in a nonrenal or nonrenal-like epithelium. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Apical Na+-Cl− Symport in Rabbit Gallbladder Epithelium: A Thiazide-Sensitive Cotransporter (TSC)

Loading next page...
Copyright © Inc. by 2000 Springer-Verlag New York
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial