Apical Heterotrimeric G-proteins Activate CFTR in the Native Sweat Duct

Apical Heterotrimeric G-proteins Activate CFTR in the Native Sweat Duct Other than the fact that the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel can be activated by cAMP dependent kinase (PKA), little is known about the signal transduction pathways regulating CFTR. Since G-proteins play a principal role in signal transduction regulating several ion channels [4, 5, 9], we sought to test whether G-proteins control CFTR Cl− conductance (CFTR G Cl ) in the native sweat duct (SD). We permeabilized the basolateral membrane with α-toxin so as to manipulate cytosolic nucleotides. We activated G-proteins and monitored CFTR G Cl activity as described earlier [20, 23, 25]. We now show that activating G-proteins with GTP-γ-S (100 μm) also activates CFTR G Cl in the presence of 5 mm ATP alone (without exogenous cAMP). GTP-γ-S increased CFTR G Cl by 44 ± 20 mS/cm2 (mean ±se; n= 7). GDP (10 mm) inhibited G-protein activation of CFTR G Cl even in the presence of GTP-γ-S. The heterotrimeric G-protein activator (AlF4 −) in the cytoplasmic bath activated CFTR G Cl (increased by 51.5 ± 9.4 mS/cm2 in the presence of 5 mm ATP without cAMP, n= 6), the magnitude of which was similar to that induced by GTP-γ-S. Employing immunocytochemical-labeling techniques, we localized Gαs, Gαi, Gαq, and Gβ at the apical membranes of the sweat duct. Further, we showed that the mutant CFTR G Cl in ducts from cystic fibrosis (CF) subjects could be partially activated by G-proteins. The magnitude of mutant CFTR G Cl activation by G-proteins was smaller as compared to non-CF ducts but comparable to that induced by cAMP in CF ducts. We conclude that heterotrimeric G-proteins are present in the apical membrane of the native human sweat duct which may help regulate salt absorption by controlling CFTR G Cl activity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Apical Heterotrimeric G-proteins Activate CFTR in the Native Sweat Duct

Loading next page...
 
/lp/springer_journal/apical-heterotrimeric-g-proteins-activate-cftr-in-the-native-sweat-LUdlrkrUoH
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2001 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002320010036
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial