Antiviral Activity of Ctn[15-34], A Cathelicidin-Derived Eicosapeptide, Against Infectious Myonecrosis Virus in Litopenaeus vannamei Primary Hemocyte Cultures

Antiviral Activity of Ctn[15-34], A Cathelicidin-Derived Eicosapeptide, Against Infectious... The shrimp farming has been converted into a mature aquaculture industry dealing with over millions of metric tonnes of processed commodities. Nevertheless, the global shrimp productions are constantly threatened by disease outbreaks, mainly triggered by rapidly disseminating viruses. Infectious myonecrosis virus (IMNV) is one of these epizootic agents affecting shrimp production in Brazil, of which no treatment exists. Herein, the antiviral activity against IMNV of an eicosapeptide, named Ctn[15-34], derived from a member of the cathelicidin family of antimicrobial peptides, was demonstrated. Cultures of hemocytes from Litopenaeus vannamei were established that support IMNV replication and infectivity titration. The cytotoxic effect of IMNV in culture and the in vitro anti-IMNV activity of Ctn[15-34] were assessed using a high-sensitive fluorescent-based method in combination with quantitative PCR. The Ctn[15-34] (<12.5 µM) neutralized the toxic effects of IMNV at loads sufficient to kill 50% of shrimp hemocytes. This study reported for the first time the replication of IMNV in vitro and the employment of a straightforward methodology to assess cell viability and viral/antiviral activities. In addition, it provided the basis for the development of the anti-infective multi-effector Ctn[15-34] eicosapeptide and analogs as components of antiviral formulations against shrimp viral diseases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Food and Environmental Virology Springer Journals

Antiviral Activity of Ctn[15-34], A Cathelicidin-Derived Eicosapeptide, Against Infectious Myonecrosis Virus in Litopenaeus vannamei Primary Hemocyte Cultures

Loading next page...
 
/lp/springer_journal/antiviral-activity-of-ctn-15-34-a-cathelicidin-derived-eicosapeptide-ReK5400rLe
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Biomedicine; Virology; Food Science; Chemistry/Food Science, general
ISSN
1867-0334
eISSN
1867-0342
D.O.I.
10.1007/s12560-017-9285-5
Publisher site
See Article on Publisher Site

Abstract

The shrimp farming has been converted into a mature aquaculture industry dealing with over millions of metric tonnes of processed commodities. Nevertheless, the global shrimp productions are constantly threatened by disease outbreaks, mainly triggered by rapidly disseminating viruses. Infectious myonecrosis virus (IMNV) is one of these epizootic agents affecting shrimp production in Brazil, of which no treatment exists. Herein, the antiviral activity against IMNV of an eicosapeptide, named Ctn[15-34], derived from a member of the cathelicidin family of antimicrobial peptides, was demonstrated. Cultures of hemocytes from Litopenaeus vannamei were established that support IMNV replication and infectivity titration. The cytotoxic effect of IMNV in culture and the in vitro anti-IMNV activity of Ctn[15-34] were assessed using a high-sensitive fluorescent-based method in combination with quantitative PCR. The Ctn[15-34] (<12.5 µM) neutralized the toxic effects of IMNV at loads sufficient to kill 50% of shrimp hemocytes. This study reported for the first time the replication of IMNV in vitro and the employment of a straightforward methodology to assess cell viability and viral/antiviral activities. In addition, it provided the basis for the development of the anti-infective multi-effector Ctn[15-34] eicosapeptide and analogs as components of antiviral formulations against shrimp viral diseases.

Journal

Food and Environmental VirologySpringer Journals

Published: Feb 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off