Antisense-mediated down-regulation of putrescine N-methyltransferase activity in transgenic Nicotiana tabacum L. can lead to elevated levels of anatabine at the expense of nicotine

Antisense-mediated down-regulation of putrescine N-methyltransferase activity in transgenic... Nicotiana tabacum L. produces a number of pyridine alkaloids, with nicotine representing the major component and anatabine comprising most of the remainder of the alkaloid fraction. An antisense approach was used here to down-regulate activity of the important enzyme putrescine N-methyltransferase (PMT) in transformed roots of this species to determine effects upon alkaloid metabolism. Transformed root lines were produced that contained markedly reduced PMT activity, with a concomitant reduction in nicotine content compared to controls. No negative effects upon growth were observed. Several antisense-PMT transformed root lines, and also leaf tissues of regenerated transformed plants, showed a substantial increase in anatabine content relative to controls. Northern hybridization experiments indicated that the antisense-PMT manipulation had little or no effect upon the transcript levels of other genes encoding enzymes involved in alkaloid metabolism, including quinolinate acid phosphoribosyltransferase (QPT). The latter enzyme plays a key role in regulating the synthesis of nicotinic acid which supplies the pyridine ring necessary for both nicotine and anatabine synthesis. We suggest that elevated anatabine levels in antisense-PMT lines are a direct consequence of a relative oversupply of nicotinic acid which, in the absence of adequate levels of 1-methyl-Δ1-pyrrolinium cation (the ultimate product of PMT activity), is used to synthesise anatabine directly. As is discussed, no naturally occurring species or varieties of Nicotiana are known that typically produce high levels of anatabine in root or leaf tissues, meaning that the antisense PMT transgenics produced in this study have no natural counterpart. These experiments thus represent an example of metabolic engineering of plant pyridine metabolism, via antisense down-regulation of gene expression in a contributing pathway leading to secondary metabolite biosynthesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Antisense-mediated down-regulation of putrescine N-methyltransferase activity in transgenic Nicotiana tabacum L. can lead to elevated levels of anatabine at the expense of nicotine

Loading next page...
 
/lp/springer_journal/antisense-mediated-down-regulation-of-putrescine-n-methyltransferase-exkHljqXOJ
Publisher
Springer Journals
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/B:PLAN.0000009268.45851.95
Publisher site
See Article on Publisher Site

Abstract

Nicotiana tabacum L. produces a number of pyridine alkaloids, with nicotine representing the major component and anatabine comprising most of the remainder of the alkaloid fraction. An antisense approach was used here to down-regulate activity of the important enzyme putrescine N-methyltransferase (PMT) in transformed roots of this species to determine effects upon alkaloid metabolism. Transformed root lines were produced that contained markedly reduced PMT activity, with a concomitant reduction in nicotine content compared to controls. No negative effects upon growth were observed. Several antisense-PMT transformed root lines, and also leaf tissues of regenerated transformed plants, showed a substantial increase in anatabine content relative to controls. Northern hybridization experiments indicated that the antisense-PMT manipulation had little or no effect upon the transcript levels of other genes encoding enzymes involved in alkaloid metabolism, including quinolinate acid phosphoribosyltransferase (QPT). The latter enzyme plays a key role in regulating the synthesis of nicotinic acid which supplies the pyridine ring necessary for both nicotine and anatabine synthesis. We suggest that elevated anatabine levels in antisense-PMT lines are a direct consequence of a relative oversupply of nicotinic acid which, in the absence of adequate levels of 1-methyl-Δ1-pyrrolinium cation (the ultimate product of PMT activity), is used to synthesise anatabine directly. As is discussed, no naturally occurring species or varieties of Nicotiana are known that typically produce high levels of anatabine in root or leaf tissues, meaning that the antisense PMT transgenics produced in this study have no natural counterpart. These experiments thus represent an example of metabolic engineering of plant pyridine metabolism, via antisense down-regulation of gene expression in a contributing pathway leading to secondary metabolite biosynthesis.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off