Antioxidative responses of Nostoc ellipsosporum and Nostoc piscinale to salt stress

Antioxidative responses of Nostoc ellipsosporum and Nostoc piscinale to salt stress The responses of the cyanobacteria Nostoc ellipsosporum and Nostoc piscinale to salt stress during various growth stages were studied. Nostoc ellipsosporum was more NaCl tolerant and attained more biomass under salinity than N. piscinale.Accumulation of proline was detected in N. ellipsosporum under salinity stress. Malondialdehyde content decreased in both species on day 9 (mid log phase) under salt stress. A similar trend was detected in hydrogen peroxide (H O )content in N. ellipsosporum. Strong 2 2 induction in catalase (CAT) activity was observed in N. ellipsosporum on day 9 in the presence of salt. The increase in CAT activity of N. piscinale was observed only at higher concentrations of NaCl. In contrast to N. ellipsosporum, induction in peroxidase and polyphenol oxidase (PPO) activities on day 9 was stronger in N. piscinale. Salinity enhanced superoxide dismutase (SOD) and PPO activity in N. ellipsosporum at all growth stages. Moreover, different isoforms of CAT and SOD were detected in these cyanobacteria. Apparently, selection pressure in these cyanobacteria has led to the evolution of SODs and CATs as the main antioxidant enzymes against reactive oxygen species. Phycobiliprotein content in N. ellipsosporum under all conditions was significantly higher than that in N. piscinale. NaCl http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Phycology Springer Journals

Antioxidative responses of Nostoc ellipsosporum and Nostoc piscinale to salt stress

Loading next page...
 
/lp/springer_journal/antioxidative-responses-of-nostoc-ellipsosporum-and-nostoc-piscinale-SujTSIPh80
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Life Sciences; Plant Sciences; Freshwater & Marine Ecology; Plant Physiology; Ecology
ISSN
0921-8971
eISSN
1573-5176
D.O.I.
10.1007/s10811-018-1506-2
Publisher site
See Article on Publisher Site

Abstract

The responses of the cyanobacteria Nostoc ellipsosporum and Nostoc piscinale to salt stress during various growth stages were studied. Nostoc ellipsosporum was more NaCl tolerant and attained more biomass under salinity than N. piscinale.Accumulation of proline was detected in N. ellipsosporum under salinity stress. Malondialdehyde content decreased in both species on day 9 (mid log phase) under salt stress. A similar trend was detected in hydrogen peroxide (H O )content in N. ellipsosporum. Strong 2 2 induction in catalase (CAT) activity was observed in N. ellipsosporum on day 9 in the presence of salt. The increase in CAT activity of N. piscinale was observed only at higher concentrations of NaCl. In contrast to N. ellipsosporum, induction in peroxidase and polyphenol oxidase (PPO) activities on day 9 was stronger in N. piscinale. Salinity enhanced superoxide dismutase (SOD) and PPO activity in N. ellipsosporum at all growth stages. Moreover, different isoforms of CAT and SOD were detected in these cyanobacteria. Apparently, selection pressure in these cyanobacteria has led to the evolution of SODs and CATs as the main antioxidant enzymes against reactive oxygen species. Phycobiliprotein content in N. ellipsosporum under all conditions was significantly higher than that in N. piscinale. NaCl

Journal

Journal of Applied PhycologySpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off