Antioxidant system and photosynthetic characteristics responses to short-term PEG-induced drought stress in cucumber seedling leaves

Antioxidant system and photosynthetic characteristics responses to short-term PEG-induced drought... The effect of short-term drought stress on the water content, antioxidant system and photosynthetic characteristics was investigated using cucumber (Cucumis sativus L.) seedlings. The results indicated that polyethylene glycol induced water stress reduced water content in shoots of cucumber seedling after treatment of 36 hours, and caused obvious reductions in net photosynthetic rate, stomatal conductance, intercellular CO2 concentration and transpiration of leaves. In addition, water stress significantly reduced the photosynthetic pigment content and inhibited photochemical activity, including actual photochemical efficiency, maximal quantum yield of photosystem II photochemistry and coefficient for photochemical quenching. Meanwhile non-photochemical quenching increased. As responses to drought stress, significant increases in electrolyte leakage, malondialdehyde, superoxide anion and hydrogen peroxide levels were detected in leaves. The superoxide dismutases, catalase, glutathione reductase and dehydroascorbate reductase activities, protein, ascorbate and glutathione content, all decreased and peroxidases activity increased, while ascorbate peroxidase and monodehydroascorbate reductase activities exhibited different trend under different degree of water stress. Therefore, it can be concluded that water stress strongly disrupted the normal metabolism of leaves and restrained water absorption. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Antioxidant system and photosynthetic characteristics responses to short-term PEG-induced drought stress in cucumber seedling leaves

Loading next page...
 
/lp/springer_journal/antioxidant-system-and-photosynthetic-characteristics-responses-to-TpTub8WJ70
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443717020042
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial