Antioxidant enzyme activities and isozyme pattern in hairy roots and regenerated tobacco plants

Antioxidant enzyme activities and isozyme pattern in hairy roots and regenerated tobacco plants Hairy root disease is caused by infection of wounded higher plants with Agrobacterium rhizogenes. Transformation of tissues or plants with A. rhizogenes, as well as transformation with rol genes, in addition to hairy roots, may produce alterations in the plant secondary metabolism. H2O2 and other ROS are involved as signals in secondary metabolite production pathways and play a key role in plant defense reactions. In this work the effects of A. rhizogenes rol genes on nicotine content, antioxidant enzymes activity, H2O2 production, the pattern of peroxidase (POX) and superoxide dismutase (SOD) isozymes in hairy roots and regenerated Nicotiana tabacum plants were studied. The rise in SOD and POX activities in the transformed lines TRa and TRb and the resulting regenerated plants and a decreased level of H2O2 in them as compared with the untransformed lines indicates that rol gene expression decreases H2O2 level probably by increasing production of antioxidant enzymes. A decreased H2O2 content in TRc line, in spite of similarity of antioxidant enzyme activity as compared to normal roots, indicates that rol genes activate other mechanisms except SOD and POX enzymes for reducing H2O2. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Antioxidant enzyme activities and isozyme pattern in hairy roots and regenerated tobacco plants

Loading next page...
 
/lp/springer_journal/antioxidant-enzyme-activities-and-isozyme-pattern-in-hairy-roots-and-OiSWPvgU39
Publisher
Springer Journals
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443712030132
Publisher site
See Article on Publisher Site

Abstract

Hairy root disease is caused by infection of wounded higher plants with Agrobacterium rhizogenes. Transformation of tissues or plants with A. rhizogenes, as well as transformation with rol genes, in addition to hairy roots, may produce alterations in the plant secondary metabolism. H2O2 and other ROS are involved as signals in secondary metabolite production pathways and play a key role in plant defense reactions. In this work the effects of A. rhizogenes rol genes on nicotine content, antioxidant enzymes activity, H2O2 production, the pattern of peroxidase (POX) and superoxide dismutase (SOD) isozymes in hairy roots and regenerated Nicotiana tabacum plants were studied. The rise in SOD and POX activities in the transformed lines TRa and TRb and the resulting regenerated plants and a decreased level of H2O2 in them as compared with the untransformed lines indicates that rol gene expression decreases H2O2 level probably by increasing production of antioxidant enzymes. A decreased H2O2 content in TRc line, in spite of similarity of antioxidant enzyme activity as compared to normal roots, indicates that rol genes activate other mechanisms except SOD and POX enzymes for reducing H2O2.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 16, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off