Antioxidant Capacity of Gallic Acid in vitro Assayed on Human Erythrocytes

Antioxidant Capacity of Gallic Acid in vitro Assayed on Human Erythrocytes Gallic acid (GA) is a polyphenol present in many plants. This study was aimed to investigate the molecular interaction of GA with the human erythrocyte membrane and to determine its antioxidant capacity. The molecular interaction with the membrane of human red cells and the antioxidant property was assayed on both human red cells and molecular models of its membrane. Observations by optical, scanning electron, and defocusing microscopy demonstrated that GA is capable to convert red cells from their normal biconcave shape to crenated echinocytes. This result indicates that GA molecules are positioned in the outer monolayer of the red cell membrane. Dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were selected as classes of phospholipids found in the outer and inner monolayers of the red cell membrane, respectively. X-ray diffraction and differential scanning calorimetry showed that GA was preferentially bound to DMPC bilayers. Experiments related to the antioxidant capacity of GA indicated that this compound offsets HClO oxidative capacity on DMPE bilayers. In addition, optical, scanning, defocusing microscopy, and hemolysis assays confirmed the protective capacity of GA against HClO deleterious effects on human red cells. As a conclusion, GA would be capable to block the access of oxidants into the lipid bilayer, and thus avoid their access into red cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals
Loading next page...
 
/lp/springer_journal/antioxidant-capacity-of-gallic-acid-in-vitro-assayed-on-human-aXxbuHFhdt
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-016-9924-z
Publisher site
See Article on Publisher Site

Abstract

Gallic acid (GA) is a polyphenol present in many plants. This study was aimed to investigate the molecular interaction of GA with the human erythrocyte membrane and to determine its antioxidant capacity. The molecular interaction with the membrane of human red cells and the antioxidant property was assayed on both human red cells and molecular models of its membrane. Observations by optical, scanning electron, and defocusing microscopy demonstrated that GA is capable to convert red cells from their normal biconcave shape to crenated echinocytes. This result indicates that GA molecules are positioned in the outer monolayer of the red cell membrane. Dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were selected as classes of phospholipids found in the outer and inner monolayers of the red cell membrane, respectively. X-ray diffraction and differential scanning calorimetry showed that GA was preferentially bound to DMPC bilayers. Experiments related to the antioxidant capacity of GA indicated that this compound offsets HClO oxidative capacity on DMPE bilayers. In addition, optical, scanning, defocusing microscopy, and hemolysis assays confirmed the protective capacity of GA against HClO deleterious effects on human red cells. As a conclusion, GA would be capable to block the access of oxidants into the lipid bilayer, and thus avoid their access into red cells.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Aug 27, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off