Antimicrobial metabolites from Saraca asoca impairs the membrane transport system and quorum-sensing system in Pseudomonas aeruginosa

Antimicrobial metabolites from Saraca asoca impairs the membrane transport system and... This study was conducted to explore the antimicrobial mechanism of metabolites from Saraca asoca (SA1) using differential proteomics and metabolic profile of Pseudomonas aeruginosa after treatment with effective sub-MIC dose of 312 µg/mL. SA1 fraction was found to contain antibacterial metabolites catechol, protocatechuic acid, and epigallocatechin gallate. Proteome analysis revealed 33 differentially expressed proteins after SA1 treatment. Protein network analysis showed that SA1 treatment upregulated the DNA topological and metabolic processes. Furthermore, it revealed that T2SS, cellular component biogenesis, and response to chemical stimuli were inhibited by SA1 treatment, supported by down-regulated Na+/H+ antiporter, SdeX, ompK, and trbD proteins. Statistical analysis of mass data revealed the altered level of 20 metabolites includes HSLs, PQS, rhamnolipid, and pyocyanin. Proteome and metabolome results showed that treatment impaired cell membrane functions and quorum-sensing system. It was further confirmed by increased MDA (3.95 fold), and rhamnolipids (4.3 fold) production and, therefore, oxidative stress (36.9%) after SA1 treatment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Microbiology Springer Journals

Antimicrobial metabolites from Saraca asoca impairs the membrane transport system and quorum-sensing system in Pseudomonas aeruginosa

Loading next page...
 
/lp/springer_journal/antimicrobial-metabolites-from-saraca-asoca-impairs-the-membrane-p2bjL0Br3e
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Microbiology; Microbial Ecology; Biochemistry, general; Cell Biology; Biotechnology; Ecology
ISSN
0302-8933
eISSN
1432-072X
D.O.I.
10.1007/s00203-017-1435-5
Publisher site
See Article on Publisher Site

Abstract

This study was conducted to explore the antimicrobial mechanism of metabolites from Saraca asoca (SA1) using differential proteomics and metabolic profile of Pseudomonas aeruginosa after treatment with effective sub-MIC dose of 312 µg/mL. SA1 fraction was found to contain antibacterial metabolites catechol, protocatechuic acid, and epigallocatechin gallate. Proteome analysis revealed 33 differentially expressed proteins after SA1 treatment. Protein network analysis showed that SA1 treatment upregulated the DNA topological and metabolic processes. Furthermore, it revealed that T2SS, cellular component biogenesis, and response to chemical stimuli were inhibited by SA1 treatment, supported by down-regulated Na+/H+ antiporter, SdeX, ompK, and trbD proteins. Statistical analysis of mass data revealed the altered level of 20 metabolites includes HSLs, PQS, rhamnolipid, and pyocyanin. Proteome and metabolome results showed that treatment impaired cell membrane functions and quorum-sensing system. It was further confirmed by increased MDA (3.95 fold), and rhamnolipids (4.3 fold) production and, therefore, oxidative stress (36.9%) after SA1 treatment.

Journal

Archives of MicrobiologySpringer Journals

Published: Oct 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off