Antimicrobial and Cytotoxic Properties of Bioactive Metabolites Produced by Streptomyces cavourensis YBQ59 Isolated from Cinnamomum cassia Prels in Yen Bai Province of Vietnam

Antimicrobial and Cytotoxic Properties of Bioactive Metabolites Produced by Streptomyces... The endophytic actinomycete strain YBQ59 was isolated from Cinnamomum cassia Prels in Yen Bai province (21°53′14″N; 104°35′9″E) of northern Vietnam. Based on analysis of morphological, physiological characteristics and 16S rRNA gene sequence (GenBank Acc. No. MF950891), the strain YBQ59 possessed high similarity to Streptomyces cavourensis subsp. cavourensis strain NRRL 2740, therefore assigned as S. cavourensis YBQ59. The ethyl acetate extract of the YBQ59 culture broth isolated eight pure secondary metabolites, identified as 1-monolinolein (1), bafilomycin D (2), nonactic acid (3), daidzein (4), 3′-hydroxydaidzein (5), 5,11-epoxy-10-cadinanol (6), prelactone B (7), and daucosterol (8). Compounds 1, 3–8 were reported for the first time from S. cavourensis. Compounds 1–5 exhibited antimicrobial activities against both methicillin-resistant Staphylococcus aureus ATCC 33591 (MRSA) and methicillin-resistant Staphylococcus epidermidis ATCC 35984 (MRSE) among which the compound 1 revealed the strongest effects with minimum inhibitory concentrations of 8.5 and 14.6 µg/mL, respectively. The compound 2 showed high potential effect against MRSA (MIC of 11.1 µg/mL) but less effect against MRSE (MIC of 30.3 µg/mL). The cytotoxicity of the compounds 1–7 was investigated against human lung adenocarcinoma EGFR-TKI-resistant cells, among which compounds 1, 2, and 5 exhibited the strong effect against A549 cells with IC50 values of 3.6, 6.7, and 7.8 µM, respectively. Taken together, the experimental findings in this study suggested that the compounds 1 and 2 could be reproducible metabolites applicable for inhibition of both drug-resistant bacteria and cancer cell lines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Current Microbiology Springer Journals

Antimicrobial and Cytotoxic Properties of Bioactive Metabolites Produced by Streptomyces cavourensis YBQ59 Isolated from Cinnamomum cassia Prels in Yen Bai Province of Vietnam

Loading next page...
 
/lp/springer_journal/antimicrobial-and-cytotoxic-properties-of-bioactive-metabolites-j4dVPuKbzB
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Life Sciences; Microbiology; Biotechnology
ISSN
0343-8651
eISSN
1432-0991
D.O.I.
10.1007/s00284-018-1517-x
Publisher site
See Article on Publisher Site

Abstract

The endophytic actinomycete strain YBQ59 was isolated from Cinnamomum cassia Prels in Yen Bai province (21°53′14″N; 104°35′9″E) of northern Vietnam. Based on analysis of morphological, physiological characteristics and 16S rRNA gene sequence (GenBank Acc. No. MF950891), the strain YBQ59 possessed high similarity to Streptomyces cavourensis subsp. cavourensis strain NRRL 2740, therefore assigned as S. cavourensis YBQ59. The ethyl acetate extract of the YBQ59 culture broth isolated eight pure secondary metabolites, identified as 1-monolinolein (1), bafilomycin D (2), nonactic acid (3), daidzein (4), 3′-hydroxydaidzein (5), 5,11-epoxy-10-cadinanol (6), prelactone B (7), and daucosterol (8). Compounds 1, 3–8 were reported for the first time from S. cavourensis. Compounds 1–5 exhibited antimicrobial activities against both methicillin-resistant Staphylococcus aureus ATCC 33591 (MRSA) and methicillin-resistant Staphylococcus epidermidis ATCC 35984 (MRSE) among which the compound 1 revealed the strongest effects with minimum inhibitory concentrations of 8.5 and 14.6 µg/mL, respectively. The compound 2 showed high potential effect against MRSA (MIC of 11.1 µg/mL) but less effect against MRSE (MIC of 30.3 µg/mL). The cytotoxicity of the compounds 1–7 was investigated against human lung adenocarcinoma EGFR-TKI-resistant cells, among which compounds 1, 2, and 5 exhibited the strong effect against A549 cells with IC50 values of 3.6, 6.7, and 7.8 µM, respectively. Taken together, the experimental findings in this study suggested that the compounds 1 and 2 could be reproducible metabolites applicable for inhibition of both drug-resistant bacteria and cancer cell lines.

Journal

Current MicrobiologySpringer Journals

Published: Jun 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off