Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Antidiabetic activity of mefloquine via GLP-1 receptor modulation against STZ–NA-induced diabetes in albino wistar rats

Antidiabetic activity of mefloquine via GLP-1 receptor modulation against STZ–NA-induced diabetes... Mefloquine was retrieved as a glucagon -like peptide-1 receptor agonist and, therefore, evaluated for its antidiabetic potential against non-insulin-dependent diabetes mellitus (NIDDM) in experimental animals. NIDDM was induced by single intraperitoneal injection of streptozotocin and nicotinamide (60 + 110 mg/kg) in albino wistar rats. The experimental animals were scrutinised for electrocardiographic (ECG) and heart rate variability (HRV) factors to study the autonomic dysfunction along with blood glucose, serum insulin, and liver glycogen levels for glycemic control. Simultaneously, antioxidant markers (TBARs, protein carbonyl, GSH, SOD, catalase) and inflammatory markers (COX, LOX, NO) were scrutinized as well. Oral administration of mefloquine normalised the heart rate with favourable regulation of time and frequency domain HRV parameters. Mefloquine restored the blood glucose, serum insulin, and liver glycogen levels favourably in diabetic rats. Treatment with mefloquine curtailed the antioxidant markers with favourable regulation of inflammatory signals. Mefloquine was also found to be less hepatotoxic in contrast to the standard metformin, providing an integrated advantage as an antidiabetic agent. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png 3 Biotech Springer Journals

Antidiabetic activity of mefloquine via GLP-1 receptor modulation against STZ–NA-induced diabetes in albino wistar rats

Loading next page...
 
/lp/springer_journal/antidiabetic-activity-of-mefloquine-via-glp-1-receptor-modulation-JxRPTY3GFM

References (40)

Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Chemistry; Biotechnology; Agriculture; Cancer Research; Bioinformatics; Stem Cells; Biomaterials
ISSN
2190-572X
eISSN
2190-5738
DOI
10.1007/s13205-018-1250-y
Publisher site
See Article on Publisher Site

Abstract

Mefloquine was retrieved as a glucagon -like peptide-1 receptor agonist and, therefore, evaluated for its antidiabetic potential against non-insulin-dependent diabetes mellitus (NIDDM) in experimental animals. NIDDM was induced by single intraperitoneal injection of streptozotocin and nicotinamide (60 + 110 mg/kg) in albino wistar rats. The experimental animals were scrutinised for electrocardiographic (ECG) and heart rate variability (HRV) factors to study the autonomic dysfunction along with blood glucose, serum insulin, and liver glycogen levels for glycemic control. Simultaneously, antioxidant markers (TBARs, protein carbonyl, GSH, SOD, catalase) and inflammatory markers (COX, LOX, NO) were scrutinized as well. Oral administration of mefloquine normalised the heart rate with favourable regulation of time and frequency domain HRV parameters. Mefloquine restored the blood glucose, serum insulin, and liver glycogen levels favourably in diabetic rats. Treatment with mefloquine curtailed the antioxidant markers with favourable regulation of inflammatory signals. Mefloquine was also found to be less hepatotoxic in contrast to the standard metformin, providing an integrated advantage as an antidiabetic agent.

Journal

3 BiotechSpringer Journals

Published: May 4, 2018

There are no references for this article.