Anticonvulsive activity of (1S)-(−)-verbenone involving RNA expression of BDNF, COX-2, and c-fos

Anticonvulsive activity of (1S)-(−)-verbenone involving RNA expression of BDNF, COX-2, and c-fos (1S)-(−)-verbenone (VRB) is a monoterpene present in the essential oils of many plants which has shown therapeutic effect; however, its anticonvulsant activity has not yet been evaluated. The present work sought to investigate the anticonvulsant activity of VRB using pilocarpine and pentylenetetrazole-induced seizure testing; seeking also probable mechanisms of action. VRB caused no significant changes in motor coordination. Also, no significant data was observed in the pilocarpine-induced seizure tests. In the PTZ-induced seizures test, VRB showed anticonvulsant activity at doses of 200 mg/kg i.p. (733 ± 109.4 s) and 250 mg/kg i.p. (648.8 ± 124.5 s) significantly increasing the latency to onset of first seizure as compared with the vehicle group (51.8 ± 2.84 s). Pretreatment with flumazenil (FLU) did not reverse the anticonvulsive effect of VRB; however, it was able to upregulate BDNF and COX-2 genes and downregulate c-fos. The findings suggest that the anticonvulsant effects of VRB may be related to RNA expression modulations of COX-2, BDNF, and c-fos. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Naunyn-Schmiedeberg's Archives of Pharmacology Springer Journals
Loading next page...
 
/lp/springer_journal/anticonvulsive-activity-of-1s-verbenone-involving-rna-expression-of-FaEm4nq4mX
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Biomedicine; Pharmacology/Toxicology; Neurosciences
ISSN
0028-1298
eISSN
1432-1912
D.O.I.
10.1007/s00210-017-1388-x
Publisher site
See Article on Publisher Site

Abstract

(1S)-(−)-verbenone (VRB) is a monoterpene present in the essential oils of many plants which has shown therapeutic effect; however, its anticonvulsant activity has not yet been evaluated. The present work sought to investigate the anticonvulsant activity of VRB using pilocarpine and pentylenetetrazole-induced seizure testing; seeking also probable mechanisms of action. VRB caused no significant changes in motor coordination. Also, no significant data was observed in the pilocarpine-induced seizure tests. In the PTZ-induced seizures test, VRB showed anticonvulsant activity at doses of 200 mg/kg i.p. (733 ± 109.4 s) and 250 mg/kg i.p. (648.8 ± 124.5 s) significantly increasing the latency to onset of first seizure as compared with the vehicle group (51.8 ± 2.84 s). Pretreatment with flumazenil (FLU) did not reverse the anticonvulsive effect of VRB; however, it was able to upregulate BDNF and COX-2 genes and downregulate c-fos. The findings suggest that the anticonvulsant effects of VRB may be related to RNA expression modulations of COX-2, BDNF, and c-fos.

Journal

Naunyn-Schmiedeberg's Archives of PharmacologySpringer Journals

Published: Jun 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off