Antibacterial effect of silver nanoparticles prepared in bipolymers at moderate temperature

Antibacterial effect of silver nanoparticles prepared in bipolymers at moderate temperature The purpose of this study was to investigate the antibacterial effect of silver nanoparticles in chitosan–poly(ethylene glycol) suspension. The silver nanoparticles (AgNPs) were prepared by use of an environmentally benign method from chitosan (Cts) and poly(ethylene glycol) (PEG) at moderate temperature and with stirring for different times. Silver nitrate (AgNO3) was used as the metal precursor and Cts and PEG were used as solid support and polymeric stabilizer, respectively. The antibacterial activity of silver–chitosan–poly(ethylene glycol) nanocomposites (Ag–Cts–PEG NCs) against Staphylococcus aureus, Micrococcus luteum, Pseudomonas aeruginosa, and Escherichia coli was tested by use of the Mueller–Hinton agar disk-diffusion method. Formation of AgNPs was determined by UV–visible spectroscopy; surface plasmon absorption maxima were observed at 415–430 nm in the UV–visible spectrum. The peaks in the XRD pattern confirmed that the AgNPs had a face-centered cubic structure; peaks of contaminated crystalline phases were not observed. Transmission electron microscopy (TEM) revealed that the AgNPs synthesized were spherical. The optimum stirring time for synthesis of the smallest particle size (mean diameter 5.50 nm) was 12 h. The AgNPs in Cts–PEG were effective against all the bacteria tested. Higher antibacterial activity was observed for AgNPs with smaller size. These results suggest that AgNPs can be used as an effective inhibitor of bacteria and can be used in medical applications. These results also suggest that AgNPs were successfully synthesized in Cts–PEG suspension at moderate temperature with different stirring times. Research on Chemical Intermediates Springer Journals

Antibacterial effect of silver nanoparticles prepared in bipolymers at moderate temperature

Loading next page...
Springer Netherlands
Copyright © 2013 by Springer Science+Business Media Dordrecht
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial