Antibacterial Agents in Mediterranean Finfish Farming: A Synopsis of Drug Pharmacokinetics in Important Euryhaline Fish Species and Possible Environmental Implications

Antibacterial Agents in Mediterranean Finfish Farming: A Synopsis of Drug Pharmacokinetics in... The literature pertaining to the use of registered antibacterial agents in Mediterranean finfish farming is reviewed, with an emphasis on the Greek fish-farming industry. This review provides a scientific resource dedicated to the design of future antibacterial dosing regimes in Mediterranean fish farming, where insufficient supporting information is currently available. This paper addresses the paucity in knowledge concerning pharmacokinetics and the efficacy and environmental impact of commonly used antibacterials needed to direct future research and promote good practices in the euryhaline fish farming industry. Several registered antibacterials are currently available for combating bacterial infections, including tetracyclines, (fluoro) quinolones, potentiated sulfa, penicillin and chloramphenicol derivatives. Based on the available data, oxytetracycline (OTC) and quinolone drugs (oxolinic acid – OA and flumequine – FLU) are the most widely used in Mediterranean aquaculture. As a result these drugs have received the most extensive studies, whereas, there is considerable paucity of reliable data on pharmacokinetic and the depletion characteristics of other drugs used, particularly potentiated sulfa, penicillin derivatives and florfenicol. We find there is incomplete data on drug efficacy and minimum inhibitory concentrations (MIC) for common antibacterials used against the major bacterial pathogens of Mediterranean fish species. Furthermore, a considerable lack of data on environmental drug concentrations around Mediterranean fish farms was also identified, highlighting the need for more extensive environmental studies to monitor contamination in environmental components i.e., water and sediment, and in non-target species (flora and fauna). Prudent selection and use of antibacterials can encourage lower dosage applications, enhance treatment efficacy, and help to minimize contamination of the environment. Selection of readily bioavailable drugs which have low environmental persistence, low aquatic toxicity and high antibacterial efficacy is advised, to reduce potential losses to the environment and associated toxic effects on target species and the development of bacterial resistance. Lack of present data made it impossible to provide thorough and accurate guidance on selection and use of antibacterials and approaches for minimizing environmental impacts for the treatment of major euryhaline aquaculture species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Antibacterial Agents in Mediterranean Finfish Farming: A Synopsis of Drug Pharmacokinetics in Important Euryhaline Fish Species and Possible Environmental Implications

Loading next page...
 
/lp/springer_journal/antibacterial-agents-in-mediterranean-finfish-farming-a-synopsis-of-o3Y44HNexU
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1007/s11160-005-7850-8
Publisher site
See Article on Publisher Site

Abstract

The literature pertaining to the use of registered antibacterial agents in Mediterranean finfish farming is reviewed, with an emphasis on the Greek fish-farming industry. This review provides a scientific resource dedicated to the design of future antibacterial dosing regimes in Mediterranean fish farming, where insufficient supporting information is currently available. This paper addresses the paucity in knowledge concerning pharmacokinetics and the efficacy and environmental impact of commonly used antibacterials needed to direct future research and promote good practices in the euryhaline fish farming industry. Several registered antibacterials are currently available for combating bacterial infections, including tetracyclines, (fluoro) quinolones, potentiated sulfa, penicillin and chloramphenicol derivatives. Based on the available data, oxytetracycline (OTC) and quinolone drugs (oxolinic acid – OA and flumequine – FLU) are the most widely used in Mediterranean aquaculture. As a result these drugs have received the most extensive studies, whereas, there is considerable paucity of reliable data on pharmacokinetic and the depletion characteristics of other drugs used, particularly potentiated sulfa, penicillin derivatives and florfenicol. We find there is incomplete data on drug efficacy and minimum inhibitory concentrations (MIC) for common antibacterials used against the major bacterial pathogens of Mediterranean fish species. Furthermore, a considerable lack of data on environmental drug concentrations around Mediterranean fish farms was also identified, highlighting the need for more extensive environmental studies to monitor contamination in environmental components i.e., water and sediment, and in non-target species (flora and fauna). Prudent selection and use of antibacterials can encourage lower dosage applications, enhance treatment efficacy, and help to minimize contamination of the environment. Selection of readily bioavailable drugs which have low environmental persistence, low aquatic toxicity and high antibacterial efficacy is advised, to reduce potential losses to the environment and associated toxic effects on target species and the development of bacterial resistance. Lack of present data made it impossible to provide thorough and accurate guidance on selection and use of antibacterials and approaches for minimizing environmental impacts for the treatment of major euryhaline aquaculture species.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: May 9, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off