Anti-Inflammatory Effects of Hypophyllanthin and Niranthin Through Downregulation of NF-κB/MAPKs/PI3K-Akt Signaling Pathways

Anti-Inflammatory Effects of Hypophyllanthin and Niranthin Through Downregulation of... Hypophyllanthin (HYP) and niranthin (NIR) are major lignans in Phyllanthus spp. and have been shown to possess strong anti-inflammatory activity. In this study, we investigated the anti-inflammatory effects and the underlying molecular mechanisms of HYP and NIR in in vitro cellular model of LPS-induced U937 macrophages. The effects of HYP and NIR on the production of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) were measured by using ELISA, Western blot, and qRT-PCR. The expressions of signaling molecules related to nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), and phosphatidylinositol 3′-kinase-Akt (PI3K-Akt) signaling pathways were examined. The role of NF-κB, MAPKs, and Akt signaling pathways was confirmed by using specific inhibitors (BAY 11-7082, U0126, SB202190, SP600125, and LY294002) mediated suppression of TNF-α and COX-2 production. HYP and NIR significantly inhibited the protein and gene levels of COX-2 as well as the downstream signaling products of PGE2, TNF-α, and IL-1β. HYP and NIR also suppressed the inhibitors of kappa B (IκB), IkB kinases (Ikkα/β), NF-κB phosphorylation, and IκB degradation. HYP suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 while NIR only suppressed JNK and ERK but did not have effect on p38. These results demonstrate that HYP and NIR downregulated COX-2, TNF-α, and IL-1β gene expressions in U937 macrophages by interfering with the activation of NF-κB, MAPKs, and Akt. In conclusion, these lignans have potential to be developed as anti-inflammatory agents targeting the NF-κB, MAPK, and PI3K-Akt pathways. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Inflammation Springer Journals

Anti-Inflammatory Effects of Hypophyllanthin and Niranthin Through Downregulation of NF-κB/MAPKs/PI3K-Akt Signaling Pathways

Loading next page...
 
/lp/springer_journal/anti-inflammatory-effects-of-hypophyllanthin-and-niranthin-through-NZae3Hqw9N
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Medicine & Public Health; Rheumatology; Internal Medicine; Pharmacology/Toxicology; Pathology
ISSN
0360-3997
eISSN
1573-2576
D.O.I.
10.1007/s10753-018-0752-4
Publisher site
See Article on Publisher Site

Abstract

Hypophyllanthin (HYP) and niranthin (NIR) are major lignans in Phyllanthus spp. and have been shown to possess strong anti-inflammatory activity. In this study, we investigated the anti-inflammatory effects and the underlying molecular mechanisms of HYP and NIR in in vitro cellular model of LPS-induced U937 macrophages. The effects of HYP and NIR on the production of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) were measured by using ELISA, Western blot, and qRT-PCR. The expressions of signaling molecules related to nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), and phosphatidylinositol 3′-kinase-Akt (PI3K-Akt) signaling pathways were examined. The role of NF-κB, MAPKs, and Akt signaling pathways was confirmed by using specific inhibitors (BAY 11-7082, U0126, SB202190, SP600125, and LY294002) mediated suppression of TNF-α and COX-2 production. HYP and NIR significantly inhibited the protein and gene levels of COX-2 as well as the downstream signaling products of PGE2, TNF-α, and IL-1β. HYP and NIR also suppressed the inhibitors of kappa B (IκB), IkB kinases (Ikkα/β), NF-κB phosphorylation, and IκB degradation. HYP suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 while NIR only suppressed JNK and ERK but did not have effect on p38. These results demonstrate that HYP and NIR downregulated COX-2, TNF-α, and IL-1β gene expressions in U937 macrophages by interfering with the activation of NF-κB, MAPKs, and Akt. In conclusion, these lignans have potential to be developed as anti-inflammatory agents targeting the NF-κB, MAPK, and PI3K-Akt pathways.

Journal

InflammationSpringer Journals

Published: Feb 9, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off