Anti-CD69 therapy induces rapid mobilization and high proliferation of HSPCs through S1P and mTOR

Anti-CD69 therapy induces rapid mobilization and high proliferation of HSPCs through S1P and mTOR CD69 regulates lymphocyte egress from the thymus and lymph nodes through cis-interactions and the downregulation of surface sphingosine-1-phosphate (S1P) receptor-1 (S1P1). However, its role in the regulation of cell egress from bone marrow has not been extensively studied. We show here that CD69 targeting induced rapid and massive mobilization of BM leukocytes, which was inhibited by desensitization to S1P with FTY720. This mobilization was reproduced with anti-human CD69 mAb treatment of mice expressing human CD69. In this strain, the mobilization occurred to the same extent as that induced by AMD3100. The anti-human CD69 treatment highly increased LSK and CLP cell proliferation and numbers, both in the periphery and in the BM, and also augmented S1P1 and CXCR4 expression. Additionally, increased mTOR, p70S6K, S6, and 4E-BP1 phosphorylation was detected after in vivo anti-CD69 treatment in the bone marrow. Importantly, mTOR inhibition with rapamycin inhibited anti-huCD69-induced mobilization of hematopoietic stem and progenitor cells (HSPCs). Together, our results indicated that CD69 targeting induces not only mobilization but also high proliferation of HSPCs, and thus is crucial for precursor cell replenishment over time. These results suggest that anti-CD69 mAbs are putative novel candidates for mobilization strategies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Leukemia Springer Journals

Anti-CD69 therapy induces rapid mobilization and high proliferation of HSPCs through S1P and mTOR

Loading next page...
 
/lp/springer_journal/anti-cd69-therapy-induces-rapid-mobilization-and-high-proliferation-of-RGtTcaG3BW
Publisher
Springer Journals
Copyright
Copyright © 2018 by Macmillan Publishers Limited, part of Springer Nature
Subject
Medicine & Public Health; Medicine/Public Health, general; Internal Medicine; Intensive / Critical Care Medicine; Cancer Research; Oncology; Hematology
ISSN
0887-6924
eISSN
1476-5551
D.O.I.
10.1038/s41375-018-0052-x
Publisher site
See Article on Publisher Site

Abstract

CD69 regulates lymphocyte egress from the thymus and lymph nodes through cis-interactions and the downregulation of surface sphingosine-1-phosphate (S1P) receptor-1 (S1P1). However, its role in the regulation of cell egress from bone marrow has not been extensively studied. We show here that CD69 targeting induced rapid and massive mobilization of BM leukocytes, which was inhibited by desensitization to S1P with FTY720. This mobilization was reproduced with anti-human CD69 mAb treatment of mice expressing human CD69. In this strain, the mobilization occurred to the same extent as that induced by AMD3100. The anti-human CD69 treatment highly increased LSK and CLP cell proliferation and numbers, both in the periphery and in the BM, and also augmented S1P1 and CXCR4 expression. Additionally, increased mTOR, p70S6K, S6, and 4E-BP1 phosphorylation was detected after in vivo anti-CD69 treatment in the bone marrow. Importantly, mTOR inhibition with rapamycin inhibited anti-huCD69-induced mobilization of hematopoietic stem and progenitor cells (HSPCs). Together, our results indicated that CD69 targeting induces not only mobilization but also high proliferation of HSPCs, and thus is crucial for precursor cell replenishment over time. These results suggest that anti-CD69 mAbs are putative novel candidates for mobilization strategies.

Journal

LeukemiaSpringer Journals

Published: Feb 27, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off