Anthranilate N-hydroxycinnamoyl/benzoyltransferase gene from carnation: rapid elicitation of transcription and promoter analysis

Anthranilate N-hydroxycinnamoyl/benzoyltransferase gene from carnation: rapid elicitation of... Hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT) catalyses the committed reaction of phytoalexin biosynthesis in carnation (Dianthus caryophyllus L.). Three HCBT cDNAs were cloned previously from suspension-cultured carnation cells that had been induced with fungal elicitor. A rapid, transient induction of hcbt transcripts upon elicitation, reaching maximal abundances within about 0.5 h and returning to basal levels within 4 h, suggested the involvement of unusual cis elements. A DNA fragment of 3.8 kb, spanning the hcbt2 gene with the 5′-flanking region of roughly 1.8 kb, was cloned from carnation plants. The gene encodes one long open reading frame lacking introns. The DNA sequence revealed a conserved TATA box, three elicitor response elements (EREs) and a 9 bp direct repeat as well as an interrupted direct repeat of 11 bp in the TATA distal region. EMSA revealed the binding of elicitor-inducible nuclear factors to the promoter region from –377 to –326 spanning two of the EREs, and their functional relevance was confirmed by transient expression assays of hcbt2 promoter-GUS reporter gene constructs in parsley protoplasts. Furthermore, an oligo(A) segment was present immediately preceding the start of translation (+140 to +150). Transient expression analysis demonstrated that the sequence upstream to –1157 at least is required in context with the 5′-UTR, particularly including the poly(A) segment, for strong expression and full elicitor induction of the hcbt2 gene. The results suggested that several sequence motifs scattered over a wide range of the 5′-flanking region and into the exonic sequence are responsible for the full elicitor regulation of the hcbt2 gene. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Anthranilate N-hydroxycinnamoyl/benzoyltransferase gene from carnation: rapid elicitation of transcription and promoter analysis

Loading next page...
 
/lp/springer_journal/anthranilate-n-hydroxycinnamoyl-benzoyltransferase-gene-from-carnation-zKX7EKJjpB
Publisher
Springer Journals
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006003731919
Publisher site
See Article on Publisher Site

Abstract

Hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT) catalyses the committed reaction of phytoalexin biosynthesis in carnation (Dianthus caryophyllus L.). Three HCBT cDNAs were cloned previously from suspension-cultured carnation cells that had been induced with fungal elicitor. A rapid, transient induction of hcbt transcripts upon elicitation, reaching maximal abundances within about 0.5 h and returning to basal levels within 4 h, suggested the involvement of unusual cis elements. A DNA fragment of 3.8 kb, spanning the hcbt2 gene with the 5′-flanking region of roughly 1.8 kb, was cloned from carnation plants. The gene encodes one long open reading frame lacking introns. The DNA sequence revealed a conserved TATA box, three elicitor response elements (EREs) and a 9 bp direct repeat as well as an interrupted direct repeat of 11 bp in the TATA distal region. EMSA revealed the binding of elicitor-inducible nuclear factors to the promoter region from –377 to –326 spanning two of the EREs, and their functional relevance was confirmed by transient expression assays of hcbt2 promoter-GUS reporter gene constructs in parsley protoplasts. Furthermore, an oligo(A) segment was present immediately preceding the start of translation (+140 to +150). Transient expression analysis demonstrated that the sequence upstream to –1157 at least is required in context with the 5′-UTR, particularly including the poly(A) segment, for strong expression and full elicitor induction of the hcbt2 gene. The results suggested that several sequence motifs scattered over a wide range of the 5′-flanking region and into the exonic sequence are responsible for the full elicitor regulation of the hcbt2 gene.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off