Answering queries using materialized views with minimum size

Answering queries using materialized views with minimum size In this paper, we study the following problem. Given a database and a set of queries, we want to find a set of views that can compute the answers to the queries, such that the amount of space, in bytes, required to store the viewset is minimum on the given database. (We also handle problem instances where the input has a set of database instances, as described by an oracle that returns the sizes of view relations for given view definitions.) This problem is important for applications such as distributed databases, data warehousing, and data integration. We explore the decidability and complexity of the problem for workloads of conjunctive queries. We show that results differ significantly depending on whether the workload queries have self-joins. Further, for queries without self-joins we describe a very compact search space of views, which contains all views in at least one optimal viewset. We present techniques for finding a minimum-size viewset for a single query without self-joins by using the shape of the query and its constraints, and validate the approach by extensive experiments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Answering queries using materialized views with minimum size

Loading next page...
 
/lp/springer_journal/answering-queries-using-materialized-views-with-minimum-size-0v9FV8uMXN
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-005-0162-8
Publisher site
See Article on Publisher Site

Abstract

In this paper, we study the following problem. Given a database and a set of queries, we want to find a set of views that can compute the answers to the queries, such that the amount of space, in bytes, required to store the viewset is minimum on the given database. (We also handle problem instances where the input has a set of database instances, as described by an oracle that returns the sizes of view relations for given view definitions.) This problem is important for applications such as distributed databases, data warehousing, and data integration. We explore the decidability and complexity of the problem for workloads of conjunctive queries. We show that results differ significantly depending on whether the workload queries have self-joins. Further, for queries without self-joins we describe a very compact search space of views, which contains all views in at least one optimal viewset. We present techniques for finding a minimum-size viewset for a single query without self-joins by using the shape of the query and its constraints, and validate the approach by extensive experiments.

Journal

The VLDB JournalSpringer Journals

Published: Sep 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off