Answering pattern match queries in large graph databases via graph embedding

Answering pattern match queries in large graph databases via graph embedding The growing popularity of graph databases has generated interesting data management problems, such as subgraph search, shortest path query, reachability verification, and pattern matching. Among these, a pattern match query is more flexible compared with a subgraph search and more informative compared with a shortest path or a reachability query. In this paper, we address distance-based pattern match queries over a large data graph G . Due to the huge search space, we adopt a filter-and-refine framework to answer a pattern match query over a large graph. We first find a set of candidate matches by a graph embedding technique and then evaluate these to find the exact matches. Extensive experiments confirm the superiority of our method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Answering pattern match queries in large graph databases via graph embedding

Loading next page...
 
/lp/springer_journal/answering-pattern-match-queries-in-large-graph-databases-via-graph-3SDmNRKZJm
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-011-0238-6
Publisher site
See Article on Publisher Site

Abstract

The growing popularity of graph databases has generated interesting data management problems, such as subgraph search, shortest path query, reachability verification, and pattern matching. Among these, a pattern match query is more flexible compared with a subgraph search and more informative compared with a shortest path or a reachability query. In this paper, we address distance-based pattern match queries over a large data graph G . Due to the huge search space, we adopt a filter-and-refine framework to answer a pattern match query over a large graph. We first find a set of candidate matches by a graph embedding technique and then evaluate these to find the exact matches. Extensive experiments confirm the superiority of our method.

Journal

The VLDB JournalSpringer Journals

Published: Feb 1, 2012

References

  • Saga: a subgraph matching tool for biological graphs
    Tian, Y.; McEachin, R.C.; Santos, C.; States, D.J.; Patel, J.M.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off