Anisotropy of atmospheric delay in InSAR and its effect on InSAR atmospheric correction

Anisotropy of atmospheric delay in InSAR and its effect on InSAR atmospheric correction Reconstruction of interferometric synthetic aperture radar (InSAR) atmospheric delay maps is important for the correction of tropospheric artifacts in differential InSAR (D-InSAR) and for the improvement in persistent scatterer (PS) target identification in PS-InSAR. In this study, we explored the spatial structure of atmospheric delay datasets and assessed its effect on InSAR atmospheric delay correction. Two-dimensional (2D) experimental variogram maps of turbulent mixing components derived from 12 GPS zenith wet delay (ZWD) datasets, 12 MERIS ZWD datasets, and 3 ERS-1/2 tandem interferograms showed that spatial anisotropy is common in these datasets. An anisotropic variogram model was then developed and applied to fit the experimental variograms. The results showed that the proposed 2D anisotropic variogram model is superior to the isotropic model, with average improvements in 31.92 and 33.57% in terms of root-mean-square error and correlation coefficients, respectively. With the proposed anisotropic variogram model, the atmospheric delay maps were reconstructed by kriging interpolation and used to correct the atmospheric artifacts in InSAR interferograms. The results showed that the model considering the anisotropy of atmospheric delay produces better results than that with the isotropy assumption. Finally, the effects of the anisotropy ratio, sampling density, and correlation distance of external water vapor http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Geodesy Springer Journals

Anisotropy of atmospheric delay in InSAR and its effect on InSAR atmospheric correction

Loading next page...
 
/lp/springer_journal/anisotropy-of-atmospheric-delay-in-insar-and-its-effect-on-insar-LJJE30IC8L
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Earth Sciences; Geophysics/Geodesy; Earth Sciences, general
ISSN
0949-7714
eISSN
1432-1394
D.O.I.
10.1007/s00190-018-1155-x
Publisher site
See Article on Publisher Site

Abstract

Reconstruction of interferometric synthetic aperture radar (InSAR) atmospheric delay maps is important for the correction of tropospheric artifacts in differential InSAR (D-InSAR) and for the improvement in persistent scatterer (PS) target identification in PS-InSAR. In this study, we explored the spatial structure of atmospheric delay datasets and assessed its effect on InSAR atmospheric delay correction. Two-dimensional (2D) experimental variogram maps of turbulent mixing components derived from 12 GPS zenith wet delay (ZWD) datasets, 12 MERIS ZWD datasets, and 3 ERS-1/2 tandem interferograms showed that spatial anisotropy is common in these datasets. An anisotropic variogram model was then developed and applied to fit the experimental variograms. The results showed that the proposed 2D anisotropic variogram model is superior to the isotropic model, with average improvements in 31.92 and 33.57% in terms of root-mean-square error and correlation coefficients, respectively. With the proposed anisotropic variogram model, the atmospheric delay maps were reconstructed by kriging interpolation and used to correct the atmospheric artifacts in InSAR interferograms. The results showed that the model considering the anisotropy of atmospheric delay produces better results than that with the isotropy assumption. Finally, the effects of the anisotropy ratio, sampling density, and correlation distance of external water vapor

Journal

Journal of GeodesySpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off