Anisotropic Total Variation Filtering

Anisotropic Total Variation Filtering Total variation regularization and anisotropic filtering have been established as standard methods for image denoising because of their ability to detect and keep prominent edges in the data. Both methods, however, introduce artifacts: In the case of anisotropic filtering, the preservation of edges comes at the cost of the creation of additional structures out of noise; total variation regularization, on the other hand, suffers from the stair-casing effect, which leads to gradual contrast changes in homogeneous objects, especially near curved edges and corners. In order to circumvent these drawbacks, we propose to combine the two regularization techniques. To that end we replace the isotropic TV semi-norm by an anisotropic term that mirrors the directional structure of either the noisy original data or the smoothed image. We provide a detailed existence theory for our regularization method by using the concept of relaxation. The numerical examples concluding the paper show that the proposed introduction of an anisotropy to TV regularization indeed leads to improved denoising: the stair-casing effect is reduced while at the same time the creation of artifacts is suppressed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Anisotropic Total Variation Filtering

Loading next page...
 
/lp/springer_journal/anisotropic-total-variation-filtering-voveO0q98u
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Mathematics; Numerical and Computational Physics; Mathematical Methods in Physics; Theoretical, Mathematical and Computational Physics; Systems Theory, Control; Calculus of Variations and Optimal Control; Optimization
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-010-9105-x
Publisher site
See Article on Publisher Site

Abstract

Total variation regularization and anisotropic filtering have been established as standard methods for image denoising because of their ability to detect and keep prominent edges in the data. Both methods, however, introduce artifacts: In the case of anisotropic filtering, the preservation of edges comes at the cost of the creation of additional structures out of noise; total variation regularization, on the other hand, suffers from the stair-casing effect, which leads to gradual contrast changes in homogeneous objects, especially near curved edges and corners. In order to circumvent these drawbacks, we propose to combine the two regularization techniques. To that end we replace the isotropic TV semi-norm by an anisotropic term that mirrors the directional structure of either the noisy original data or the smoothed image. We provide a detailed existence theory for our regularization method by using the concept of relaxation. The numerical examples concluding the paper show that the proposed introduction of an anisotropy to TV regularization indeed leads to improved denoising: the stair-casing effect is reduced while at the same time the creation of artifacts is suppressed.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Dec 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off