Anisotropic Iron-Oxide Nanoparticles for Diagnostic MRI: Synthesis and Contrast Properties

Anisotropic Iron-Oxide Nanoparticles for Diagnostic MRI: Synthesis and Contrast Properties The scientific and technical literature addressing the synthesis of anisotropic iron-oxide nanoparticles of various shapes (cubic, rod-like, clustered, etc.) sized from 10 to 100 nm and their application for diagnostic magnetic resonance imaging (MRI) of tissues and organs is analyzed. The analysis indicates that the nanoparticle shape, size, and surface chemistry affect considerably relaxation parameters T1 and T2. Thus, cubic iron-oxide nanoparticles had the greatest T2 values. Furthermore, rod-like and octapodal nanoparticles also exhibit rather high T2 values so that they can be used as contrast agents for diagnostic MRI. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Pharmaceutical Chemistry Journal Springer Journals

Anisotropic Iron-Oxide Nanoparticles for Diagnostic MRI: Synthesis and Contrast Properties

Loading next page...
 
/lp/springer_journal/anisotropic-iron-oxide-nanoparticles-for-diagnostic-mri-synthesis-and-H43METiIma
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Pharmacy; Pharmacy; Pharmacology/Toxicology; Organic Chemistry
ISSN
0091-150X
eISSN
1573-9031
D.O.I.
10.1007/s11094-018-1796-3
Publisher site
See Article on Publisher Site

Abstract

The scientific and technical literature addressing the synthesis of anisotropic iron-oxide nanoparticles of various shapes (cubic, rod-like, clustered, etc.) sized from 10 to 100 nm and their application for diagnostic magnetic resonance imaging (MRI) of tissues and organs is analyzed. The analysis indicates that the nanoparticle shape, size, and surface chemistry affect considerably relaxation parameters T1 and T2. Thus, cubic iron-oxide nanoparticles had the greatest T2 values. Furthermore, rod-like and octapodal nanoparticles also exhibit rather high T2 values so that they can be used as contrast agents for diagnostic MRI.

Journal

Pharmaceutical Chemistry JournalSpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off