Anisole fluorescence spectroscopy for temperature measurements with a Hg (Xe) arc lamp excitation

Anisole fluorescence spectroscopy for temperature measurements with a Hg (Xe) arc lamp excitation The main contribution of this study is to propose time-resolved measurements to determine temperature with a novel source of continuous excitation for an induced fluorescence technique with laser diagnosis based on tracer-induced fluorescence, which has become a major tool for experimental studies of fluid dynamics in reaction flows. We use a Hg (Xe) arc lamp as a continuous light source that has a wide range of emissions in wavelength. With this setup, one can reach high spatial and temporal resolution (temperature, pressure, species concentration, and velocity) to acquire quantitative data for the control of fluid thermal systems, such as engines, combustion chambers, furnaces, and reactors. A fluorescence study was performed on various tracers and their configurations. We focus on an anisole tracer using a broad wavelength of excitations. We propose a calibration to achieve temperature measurements in the range of 493–773 K and from 0.2 to 3.5 MPa of pressure. The temperature-dependent fluorescence is based on a two-line technique. The results give a better understanding of the influence of temperature and pressure in a nitrogen bath gas on the fluorescence photophysics in the UV domain. High temporal resolution was acquired using a high-speed intensified camera setup. The application of the photomultipliers manages the time-scale evolution of the flow in continuous emission and this eliminates the signal-to-noise ratio impact. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Anisole fluorescence spectroscopy for temperature measurements with a Hg (Xe) arc lamp excitation

Loading next page...
 
/lp/springer_journal/anisole-fluorescence-spectroscopy-for-temperature-measurements-with-a-xF4FqhQhy0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-017-2302-5
Publisher site
See Article on Publisher Site

Abstract

The main contribution of this study is to propose time-resolved measurements to determine temperature with a novel source of continuous excitation for an induced fluorescence technique with laser diagnosis based on tracer-induced fluorescence, which has become a major tool for experimental studies of fluid dynamics in reaction flows. We use a Hg (Xe) arc lamp as a continuous light source that has a wide range of emissions in wavelength. With this setup, one can reach high spatial and temporal resolution (temperature, pressure, species concentration, and velocity) to acquire quantitative data for the control of fluid thermal systems, such as engines, combustion chambers, furnaces, and reactors. A fluorescence study was performed on various tracers and their configurations. We focus on an anisole tracer using a broad wavelength of excitations. We propose a calibration to achieve temperature measurements in the range of 493–773 K and from 0.2 to 3.5 MPa of pressure. The temperature-dependent fluorescence is based on a two-line technique. The results give a better understanding of the influence of temperature and pressure in a nitrogen bath gas on the fluorescence photophysics in the UV domain. High temporal resolution was acquired using a high-speed intensified camera setup. The application of the photomultipliers manages the time-scale evolution of the flow in continuous emission and this eliminates the signal-to-noise ratio impact.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off