Angiotensin II Receptor Type I-Regulated Anion Secretion in Cystic Fibrosis Pancreatic Duct Cells

Angiotensin II Receptor Type I-Regulated Anion Secretion in Cystic Fibrosis Pancreatic Duct Cells The β-adrenergic (cAMP-dependent) regulation of Cl− conductance is defective in cystic fibrosis (CF). The present study explored alternative regulation of anion secretion in CF pancreatic ductal cells (CFPAC-1) by angiotensin II (AII) using the short-circuit current (I SC ) technique. An increase in I SC could be induced in CFPAC-1 cells by basolateral or apical application of AII in a concentration-dependent manner (EC50 at 3 μm and 100 nm, respectively). Angiotensin receptor subtypes were identified using specific antagonists, losartan and PD123177, for AT1 and AT2 receptors, respectively. It was found that losartan (1 μm) could completely inhibit the AII-induced I SC , whereas, PD123177 exerted insignificant effect on the I SC , indicating predominant involvement of AT1 receptors. The presence of AT1 receptors in CFPAC-1 cells was also demonstrated by immunohistochemical studies using specific antibodies against AT1 receptors. Confocal microscopic study demonstrated a rise in intracellular Ca2+ upon stimulation by AII indicating a role of intracellular Ca2+ in mediating the AII response. Depletion of intracellular but not extracellular pool of Ca2+ diminished the AII-induced I SC . Treatment of the monolayers with a Cl− channel blocker, DIDS, markedly reduced the I SC , indicating that a large portion of the AII-activated I SC was Cl−-dependent. AII-induced I SC was also observed in monolayers whose basolateral membranes had been permeabilized by nystatin, suggesting that the I SC was mediated by apical Cl− channels. Our study indicates an AT1-mediated Ca2+-dependent regulatory mechanism for anion secretion in CF pancreatic duct cells which may be important for the physiology and pathophysiology of the pancreas. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Angiotensin II Receptor Type I-Regulated Anion Secretion in Cystic Fibrosis Pancreatic Duct Cells

Loading next page...
 
/lp/springer_journal/angiotensin-ii-receptor-type-i-regulated-anion-secretion-in-cystic-xvp0Heknb7
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1997 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900204
Publisher site
See Article on Publisher Site

Abstract

The β-adrenergic (cAMP-dependent) regulation of Cl− conductance is defective in cystic fibrosis (CF). The present study explored alternative regulation of anion secretion in CF pancreatic ductal cells (CFPAC-1) by angiotensin II (AII) using the short-circuit current (I SC ) technique. An increase in I SC could be induced in CFPAC-1 cells by basolateral or apical application of AII in a concentration-dependent manner (EC50 at 3 μm and 100 nm, respectively). Angiotensin receptor subtypes were identified using specific antagonists, losartan and PD123177, for AT1 and AT2 receptors, respectively. It was found that losartan (1 μm) could completely inhibit the AII-induced I SC , whereas, PD123177 exerted insignificant effect on the I SC , indicating predominant involvement of AT1 receptors. The presence of AT1 receptors in CFPAC-1 cells was also demonstrated by immunohistochemical studies using specific antibodies against AT1 receptors. Confocal microscopic study demonstrated a rise in intracellular Ca2+ upon stimulation by AII indicating a role of intracellular Ca2+ in mediating the AII response. Depletion of intracellular but not extracellular pool of Ca2+ diminished the AII-induced I SC . Treatment of the monolayers with a Cl− channel blocker, DIDS, markedly reduced the I SC , indicating that a large portion of the AII-activated I SC was Cl−-dependent. AII-induced I SC was also observed in monolayers whose basolateral membranes had been permeabilized by nystatin, suggesting that the I SC was mediated by apical Cl− channels. Our study indicates an AT1-mediated Ca2+-dependent regulatory mechanism for anion secretion in CF pancreatic duct cells which may be important for the physiology and pathophysiology of the pancreas.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Apr 1, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off