Angiogenesis and vascular stability in eicosanoids and cancer

Angiogenesis and vascular stability in eicosanoids and cancer Angiogenesis and inflammation are hallmarks of cancer. Arachidonic acid and other polyunsaturated fatty acids (PUFAs) are primarily metabolized by three distinct enzymatic systems initiated by cyclooxygenases, lipoxygenases, and cytochrome P450 enzymes (CYP) to generate bioactive eicosanoids, including prostanoids, leukotrienes, hydroxyeicosatetraenoic acids, and epoxyeicosatrienoic acids. As some of the PUFA metabolites playing essential roles in inflammatory processes, these pathways have been widely studied as therapeutic targets of inflammation. Because of their anti-inflammatory effects, these pathways were also proposed as anti-cancer targets. However, although the eicosanoids were linked to endothelial cell proliferation and angio- genesis almost two decades ago, it is only recently PUFA metabolites, especially those generated by CYP enzymes and the soluble epoxide hydrolase (sEH), have been recognized as important signaling mediators in physiological and pathological angiogenesis. Despite the fact that tumor growth and invasion are heavily dependent on inner-tumor angiogenesis and influenced by vascular stability, the role played by PUFA metabolites in tumor angiogenesis and vessel integrity has been largely overlooked. This review highlights current knowledge on the function of PUFA metabolites generated by the CYP/sEH pathway in angiogenesis and vascular stability as well as their potential involvement in cancer development. . . . Keywords 19,20-Dihydroxydocosapentaenoic acid Cytochrome http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cancer and Metastasis Reviews Springer Journals

Angiogenesis and vascular stability in eicosanoids and cancer

Loading next page...
 
/lp/springer_journal/angiogenesis-and-vascular-stability-in-eicosanoids-and-cancer-9D184irmZM
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Biomedicine; Cancer Research; Oncology; Biomedicine, general
ISSN
0167-7659
eISSN
1573-7233
D.O.I.
10.1007/s10555-018-9732-2
Publisher site
See Article on Publisher Site

Abstract

Angiogenesis and inflammation are hallmarks of cancer. Arachidonic acid and other polyunsaturated fatty acids (PUFAs) are primarily metabolized by three distinct enzymatic systems initiated by cyclooxygenases, lipoxygenases, and cytochrome P450 enzymes (CYP) to generate bioactive eicosanoids, including prostanoids, leukotrienes, hydroxyeicosatetraenoic acids, and epoxyeicosatrienoic acids. As some of the PUFA metabolites playing essential roles in inflammatory processes, these pathways have been widely studied as therapeutic targets of inflammation. Because of their anti-inflammatory effects, these pathways were also proposed as anti-cancer targets. However, although the eicosanoids were linked to endothelial cell proliferation and angio- genesis almost two decades ago, it is only recently PUFA metabolites, especially those generated by CYP enzymes and the soluble epoxide hydrolase (sEH), have been recognized as important signaling mediators in physiological and pathological angiogenesis. Despite the fact that tumor growth and invasion are heavily dependent on inner-tumor angiogenesis and influenced by vascular stability, the role played by PUFA metabolites in tumor angiogenesis and vessel integrity has been largely overlooked. This review highlights current knowledge on the function of PUFA metabolites generated by the CYP/sEH pathway in angiogenesis and vascular stability as well as their potential involvement in cancer development. . . . Keywords 19,20-Dihydroxydocosapentaenoic acid Cytochrome

Journal

Cancer and Metastasis ReviewsSpringer Journals

Published: May 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off