Angiogenesis and capillary maturation phenotypes associated with the Edpm3 locus on rat chromosome 3

Angiogenesis and capillary maturation phenotypes associated with the Edpm3 locus on rat chromosome 3 The quantitative trait locus (QTL) Edpm3 is one of a group of additively acting QTL \responsible for the difference in estrogen-induced pituitary tumor growth between the tumor-susceptible F344 and tumor-resistant BN rat strains. The F344.BN-Edpm3 BN rat strain was produced by moving the segment of rat Chr 3 between D3Mgh7 and D3Mgh13, which contains the Edpm3 QTL, from the BN strain into the F344 genetic background. In a previous study, we used this congenic line to find that the BN allele of the Edpm3 QTL reduces tissue mass and S-phase fraction in the estrogen-induced rat pituitary tumor. We now report on the use of this congenic line to investigate the linkage of Edpm3 to tumor angiogenesis. Contrary to expectation, the F344.BN-Edpm3 BN strain has significantly greater angiogenic activity than does F344 in both treated and untreated rats. Microvessel count (MVC), perivascular space, and number of nonattached pericytes/pericapillary fibroblasts are all elevated in the pituitary by chronic estrogen treatment and their values are significantly greater in F344.BN-Edpm3 BN than F344. Thus, although there is greater angiogenic activity in the pituitary of estrogen-treated F344.BN-Edpm3 BN rats, there is a deficiency in capillary maturation compared with F344. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Angiogenesis and capillary maturation phenotypes associated with the Edpm3 locus on rat chromosome 3

Loading next page...
 
/lp/springer_journal/angiogenesis-and-capillary-maturation-phenotypes-associated-with-the-5sDMgpUJ0v
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Anatomy; Zoology; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-005-2450-4
Publisher site
See Article on Publisher Site

Abstract

The quantitative trait locus (QTL) Edpm3 is one of a group of additively acting QTL \responsible for the difference in estrogen-induced pituitary tumor growth between the tumor-susceptible F344 and tumor-resistant BN rat strains. The F344.BN-Edpm3 BN rat strain was produced by moving the segment of rat Chr 3 between D3Mgh7 and D3Mgh13, which contains the Edpm3 QTL, from the BN strain into the F344 genetic background. In a previous study, we used this congenic line to find that the BN allele of the Edpm3 QTL reduces tissue mass and S-phase fraction in the estrogen-induced rat pituitary tumor. We now report on the use of this congenic line to investigate the linkage of Edpm3 to tumor angiogenesis. Contrary to expectation, the F344.BN-Edpm3 BN strain has significantly greater angiogenic activity than does F344 in both treated and untreated rats. Microvessel count (MVC), perivascular space, and number of nonattached pericytes/pericapillary fibroblasts are all elevated in the pituitary by chronic estrogen treatment and their values are significantly greater in F344.BN-Edpm3 BN than F344. Thus, although there is greater angiogenic activity in the pituitary of estrogen-treated F344.BN-Edpm3 BN rats, there is a deficiency in capillary maturation compared with F344.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 13, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off