ANDES: efficient evaluation of NOT-twig queries in relational databases

ANDES: efficient evaluation of NOT-twig queries in relational databases Despite a large body of work on XPath query processing in relational environment, systematic study of queries containing not-predicates have received little attention in the literature. Particularly, several xml supports of industrial-strength commercial rdbms fail to efficiently evaluate such queries. In this paper, we present an efficient and novel strategy to evaluate not -twig queries in a tree-unaware relational environment. not -twig queries are XPath queries with ancestor–descendant and parent–child axis and contain one or more not-predicates. We propose a novel Dewey-based encoding scheme called Andes ( AN cestor D ewey-based E ncoding S cheme), which enables us to efficiently filter out elements satisfying a not-predicate by comparing their ancestor group identifiers . In this approach, a set of elements under the same common ancestor at a specific level in the xml tree is assigned same ancestor group identifier . Based on this scheme, we propose a novel sql translation algorithm for not -twig query evaluation. Experiments carried out confirm that our proposed approach built on top of an off-the-shelf commercial rdbms significantly outperforms state-of-the-art relational and native approaches. We also explore the query plans selected by a commercial relational optimizer to evaluate our translated queries in different input cardinality. Such exploration further validates the performance benefits of Andes . http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

ANDES: efficient evaluation of NOT-twig queries in relational databases

Loading next page...
 
/lp/springer_journal/andes-efficient-evaluation-of-not-twig-queries-in-relational-databases-Q3GJ4Ru9dG
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-012-0275-9
Publisher site
See Article on Publisher Site

Abstract

Despite a large body of work on XPath query processing in relational environment, systematic study of queries containing not-predicates have received little attention in the literature. Particularly, several xml supports of industrial-strength commercial rdbms fail to efficiently evaluate such queries. In this paper, we present an efficient and novel strategy to evaluate not -twig queries in a tree-unaware relational environment. not -twig queries are XPath queries with ancestor–descendant and parent–child axis and contain one or more not-predicates. We propose a novel Dewey-based encoding scheme called Andes ( AN cestor D ewey-based E ncoding S cheme), which enables us to efficiently filter out elements satisfying a not-predicate by comparing their ancestor group identifiers . In this approach, a set of elements under the same common ancestor at a specific level in the xml tree is assigned same ancestor group identifier . Based on this scheme, we propose a novel sql translation algorithm for not -twig query evaluation. Experiments carried out confirm that our proposed approach built on top of an off-the-shelf commercial rdbms significantly outperforms state-of-the-art relational and native approaches. We also explore the query plans selected by a commercial relational optimizer to evaluate our translated queries in different input cardinality. Such exploration further validates the performance benefits of Andes .

Journal

The VLDB JournalSpringer Journals

Published: Dec 1, 2012

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off