Anchoring of 1,8-naphthalimide derivative into mesoporous MCM-41 molecular sieves

Anchoring of 1,8-naphthalimide derivative into mesoporous MCM-41 molecular sieves The fluorescent dye molecules, 4-piperidine-1,8-naphthalimide, were successfully fixed into the amino modified pore channel of mesoporous MCM-41 type materials by in situ reaction of 4-piperidinyl-1,8-naphthalic anhydride with the amino group. The formation of amide bonds on the pore surface was verified by infrared spectra. The maximum fluorescence emission peak of this hybrid material has a red shift of 13 nm compared to that of a naphthalimide derivative in ethanol solution. Moreover, the fluorescence intensity of dye molecules grafted into Ce-doped MCM-41 is higher than that in pure silica MCM-41. This phenomenon is attributed to the inhibited internal electron transfer from piperidine to naphthalimide groups by Ce4+, thus improving the fluorescence intensity of the naphthalimide group. The unique fluorescence behavior of the 1,8-naphthalimide derivative doped hybrid mesoporous material makes it a good candidate for the metal ions microdetection. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Anchoring of 1,8-naphthalimide derivative into mesoporous MCM-41 molecular sieves

Loading next page...
 
/lp/springer_journal/anchoring-of-1-8-naphthalimide-derivative-into-mesoporous-mcm-41-b1aRanKqt5
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry; Catalysis; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0297-8
Publisher site
See Article on Publisher Site

Abstract

The fluorescent dye molecules, 4-piperidine-1,8-naphthalimide, were successfully fixed into the amino modified pore channel of mesoporous MCM-41 type materials by in situ reaction of 4-piperidinyl-1,8-naphthalic anhydride with the amino group. The formation of amide bonds on the pore surface was verified by infrared spectra. The maximum fluorescence emission peak of this hybrid material has a red shift of 13 nm compared to that of a naphthalimide derivative in ethanol solution. Moreover, the fluorescence intensity of dye molecules grafted into Ce-doped MCM-41 is higher than that in pure silica MCM-41. This phenomenon is attributed to the inhibited internal electron transfer from piperidine to naphthalimide groups by Ce4+, thus improving the fluorescence intensity of the naphthalimide group. The unique fluorescence behavior of the 1,8-naphthalimide derivative doped hybrid mesoporous material makes it a good candidate for the metal ions microdetection.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Mar 6, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off