Anatomical and Optical Properties of Atrial Tissue: Search for a Suitable Animal Model

Anatomical and Optical Properties of Atrial Tissue: Search for a Suitable Animal Model The purpose of this study was to evaluate structural and optical properties of atrial tissue from common animal models and to compare it with human atria. We aimed to do this in a format that will be useful for development of better ablation tools and/or new means for visualizing atrial lesions. Human atrial tissue from clinically relevant age group was compared and contrasted with atrial tissue of large animal models commonly available for research purposes. These included pigs, sheep, dogs and cows. The presented data include area measurements of smooth atrial surface available for ablation and estimates of thickness of collagen and muscle for five different species. We also described methods to quantify presence of collagen and overall thickness of atrial wall. Provided information enables placement of atrial lesions to locations with clinically relevant atrial wall thickness and macroscopic structure ultimately helping investigators to develop better ablation and imaging tools. It also highlights the impact of collagen thickness on optical measurements and lesion visualization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cardiovascular Engineering and Technology Springer Journals

Anatomical and Optical Properties of Atrial Tissue: Search for a Suitable Animal Model

Loading next page...
 
/lp/springer_journal/anatomical-and-optical-properties-of-atrial-tissue-search-for-a-RTd9hg7Qko
Publisher
Springer Journals
Copyright
Copyright © 2017 by Biomedical Engineering Society
Subject
Engineering; Biomedical Engineering; Cardiology; Biomedicine, general
ISSN
1869-408X
eISSN
1869-4098
D.O.I.
10.1007/s13239-017-0329-7
Publisher site
See Article on Publisher Site

Abstract

The purpose of this study was to evaluate structural and optical properties of atrial tissue from common animal models and to compare it with human atria. We aimed to do this in a format that will be useful for development of better ablation tools and/or new means for visualizing atrial lesions. Human atrial tissue from clinically relevant age group was compared and contrasted with atrial tissue of large animal models commonly available for research purposes. These included pigs, sheep, dogs and cows. The presented data include area measurements of smooth atrial surface available for ablation and estimates of thickness of collagen and muscle for five different species. We also described methods to quantify presence of collagen and overall thickness of atrial wall. Provided information enables placement of atrial lesions to locations with clinically relevant atrial wall thickness and macroscopic structure ultimately helping investigators to develop better ablation and imaging tools. It also highlights the impact of collagen thickness on optical measurements and lesion visualization.

Journal

Cardiovascular Engineering and TechnologySpringer Journals

Published: Sep 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off