Analytically solvable model for the entanglement via scattering-like mechanisms

Analytically solvable model for the entanglement via scattering-like mechanisms We study entanglement in a composite system built out of two interacting subsystems. The long-time entanglement is shown to be quantified in terms of the S-matrix of an auxiliary single-particle scattering process. We present exact results for a system consisting of a qubit and an oscillator as well as for the case of a pair of qubits and a single oscillator. We show that entanglement can precisely be controlled by tuning the parameters of the corresponding scattering process. Within tailored parameter regimes, the extremal entanglement is achieved when time of scattering is of order of the oscillator frequency inverse. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Analytically solvable model for the entanglement via scattering-like mechanisms

Loading next page...
 
/lp/springer_journal/analytically-solvable-model-for-the-entanglement-via-scattering-like-0HqFJo6KqL
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-009-0121-1
Publisher site
See Article on Publisher Site

Abstract

We study entanglement in a composite system built out of two interacting subsystems. The long-time entanglement is shown to be quantified in terms of the S-matrix of an auxiliary single-particle scattering process. We present exact results for a system consisting of a qubit and an oscillator as well as for the case of a pair of qubits and a single oscillator. We show that entanglement can precisely be controlled by tuning the parameters of the corresponding scattering process. Within tailored parameter regimes, the extremal entanglement is achieved when time of scattering is of order of the oscillator frequency inverse.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jul 16, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off