Analytical modeling of gate-all-around junctionless transistor based biosensors for detection of neutral biomolecule species

Analytical modeling of gate-all-around junctionless transistor based biosensors for detection of... In recent times, FET-based sensors have been widely used in industrial and domestic applications due to their low cost and high sensitivity. In this paper, a nanogap-embedded gate-all-around junctionless transistor (GAA JLT) is proposed for label-free electrochemical detection of neutral biomolecule species such as Uricase, Protein, ChOx, APTES and Streptavidin. Shifts in subthreshold current, threshold voltage and capacitance are used to predict the response of the sensor. Impact of cavity width, cavity length, and gate length on the sensitivity of a junctionless transistor has also been investigated in detail. An analytical model has been developed for a GAA JLT-based biosensor. The results are compared with an inversion mode transistor-based biosensor using TCAD numerical simulation. The GAA JLT shows very high sensitivity due to the gate all around structure and bulk conduction mechanism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Computational Electronics Springer Journals

Analytical modeling of gate-all-around junctionless transistor based biosensors for detection of neutral biomolecule species

Loading next page...
 
/lp/springer_journal/analytical-modeling-of-gate-all-around-junctionless-transistor-based-tTe8k5yIGP
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Mathematical and Computational Engineering; Electrical Engineering; Theoretical, Mathematical and Computational Physics; Optical and Electronic Materials; Mechanical Engineering
ISSN
1569-8025
eISSN
1572-8137
D.O.I.
10.1007/s10825-017-1041-4
Publisher site
See Article on Publisher Site

Abstract

In recent times, FET-based sensors have been widely used in industrial and domestic applications due to their low cost and high sensitivity. In this paper, a nanogap-embedded gate-all-around junctionless transistor (GAA JLT) is proposed for label-free electrochemical detection of neutral biomolecule species such as Uricase, Protein, ChOx, APTES and Streptavidin. Shifts in subthreshold current, threshold voltage and capacitance are used to predict the response of the sensor. Impact of cavity width, cavity length, and gate length on the sensitivity of a junctionless transistor has also been investigated in detail. An analytical model has been developed for a GAA JLT-based biosensor. The results are compared with an inversion mode transistor-based biosensor using TCAD numerical simulation. The GAA JLT shows very high sensitivity due to the gate all around structure and bulk conduction mechanism.

Journal

Journal of Computational ElectronicsSpringer Journals

Published: Aug 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off