Analysis of X-ray phase contrast imaging in atomizing sprays

Analysis of X-ray phase contrast imaging in atomizing sprays Recent studies of spray-related flow fields using synchrotron-based X-ray phase contrast imaging have produced results that are sometimes straightforward to interpret in terms of the fluid structure, but in other cases the images do not reflect generally accepted physics of fluid motion. It has been unclear why some images have the appearance of a normal fluid stream while others depart significantly from expectation. The detailed numerical modeling presented here is meant to explain the images and resolve common questions about the technique. The simulations show that collimated X-ray beams will always contain signatures from every possible encounter, from the input plane to the exit plane, and these signatures generate overlapping phase contrast patterns that can prove at times impossible to interpret. Clouds of moderate- to large-size drops produce a complex, mottled X-ray phase contrast image indicating the presence of the cloud; but it is an image that cannot be interpreted further. Small drops generate something akin to one gray pixel image each, and their size is close to the resolution limit of the instrument, so the diffraction pattern is broadened by the instrument response into something more like a small diffuse blob. Dense clouds of small drops produce a composite image that is a fairly uniform gray mass indicating the presence of a drop cloud that cannot be interpreted further. Moreover, it is not possible to image intact liquid structures behind clouds of drops. Whenever a significant number of drops are present, therefore, X-ray phase contrast images are dominated by unavoidable artifacts of the technique. Sprays, by definition, consist of droplet clouds and this means that internal features in the spray formation region cannot be investigated using X-ray phase contrast imaging. Experiments in Fluids Springer Journals

Analysis of X-ray phase contrast imaging in atomizing sprays

Loading next page...
Copyright © 2011 by Springer-Verlag
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial