Analysis of Using Mixed Reality Simulations for Incremental Development of Multi-UAV Systems

Analysis of Using Mixed Reality Simulations for Incremental Development of Multi-UAV Systems Developing complex robotic systems requires expensive and time-consuming verification and testing which, especially in a case of multi-robot unmanned aerial systems (UASs), aggregates risk of hardware failures and may pose legal issues in experiments where operating more than one unmanned aircraft simultaneously is required. Thus, it is highly favorable to find and resolve most of the eventual design flaws and system bugs in a simulation, where their impacts are significantly lower. On the other hand, as the system development process approaches the final stages, the fidelity of the simulation needs to rise. However, since some phenomena that can significantly influence the system behavior are difficult to be modeled precisely, a partial embodiment of the simulation in the physical world is necessary. In this paper, we present a method for incremental development of complex unmanned aerial systems with the help of mixed reality simulations. The presented methodology is accompanied with a cost analysis to further show its benefits. The generality and versatility of the method is demonstrated in three practical use cases of various aviation systems development: (i) an unmanned system consisting of heterogeneous team of autonomous unmanned aircraft; (ii) a system for verification of collision avoidance methods among fixed http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Intelligent & Robotic Systems Springer Journals

Analysis of Using Mixed Reality Simulations for Incremental Development of Multi-UAV Systems

Loading next page...
 
/lp/springer_journal/analysis-of-using-mixed-reality-simulations-for-incremental-g5gVopHK4x
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Engineering; Control, Robotics, Mechatronics; Electrical Engineering; Artificial Intelligence (incl. Robotics); Mechanical Engineering
ISSN
0921-0296
eISSN
1573-0409
D.O.I.
10.1007/s10846-018-0875-8
Publisher site
See Article on Publisher Site

Abstract

Developing complex robotic systems requires expensive and time-consuming verification and testing which, especially in a case of multi-robot unmanned aerial systems (UASs), aggregates risk of hardware failures and may pose legal issues in experiments where operating more than one unmanned aircraft simultaneously is required. Thus, it is highly favorable to find and resolve most of the eventual design flaws and system bugs in a simulation, where their impacts are significantly lower. On the other hand, as the system development process approaches the final stages, the fidelity of the simulation needs to rise. However, since some phenomena that can significantly influence the system behavior are difficult to be modeled precisely, a partial embodiment of the simulation in the physical world is necessary. In this paper, we present a method for incremental development of complex unmanned aerial systems with the help of mixed reality simulations. The presented methodology is accompanied with a cost analysis to further show its benefits. The generality and versatility of the method is demonstrated in three practical use cases of various aviation systems development: (i) an unmanned system consisting of heterogeneous team of autonomous unmanned aircraft; (ii) a system for verification of collision avoidance methods among fixed

Journal

Journal of Intelligent & Robotic SystemsSpringer Journals

Published: May 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off