Analysis of trehalose-6-phosphate synthase (TPS) gene family suggests the formation of TPS complexes in rice

Analysis of trehalose-6-phosphate synthase (TPS) gene family suggests the formation of TPS... Trehalose-6-phosphate (T6P), an intermediate in the trehalose biosynthesis pathway, is emerging as an important regulator of plant metabolism and development. T6P levels are potentially modulated by a group of trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) homologues. In this study, we have isolated 11 TPS genes encoding proteins with both TPS and TPP domains, from rice. Functional complement assays performed in yeast tps1 and tps2 mutants, revealed that only OsTPS1 encodes an active TPS enzyme and no OsTPS protein possesses TPP activity. By using a yeast two-hybrid analysis, a complicated interaction network occurred among OsTPS proteins, and the TPS domain might be essential for this interaction to occur. The interaction between OsTPS1 and OsTPS8 in vivo was confirmed by bimolecular fluorescence complementation and coimmunoprecipitation assays. Furthermore, our gel filtration assay showed that there may exist two forms of OsTPS1 (OsTPS1a and OsTPS1b) with different elution profiles in rice. OsTPS1b was particularly cofractionated with OsTPS5 and OsTPS8 in the 360 kDa complex, while OsTPS1a was predominantly incorporated into the complexes larger than 360 kDa. Collectively, these results suggest that OsTPS family members may form trehalose-6-phosphate synthase complexes and therefore potentially modify T6P levels to regulate plant development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Analysis of trehalose-6-phosphate synthase (TPS) gene family suggests the formation of TPS complexes in rice

Loading next page...
 
/lp/springer_journal/analysis-of-trehalose-6-phosphate-synthase-tps-gene-family-suggests-IoMXuEOiHJ
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Biochemistry, general; Plant Pathology; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-011-9781-1
Publisher site
See Article on Publisher Site

Abstract

Trehalose-6-phosphate (T6P), an intermediate in the trehalose biosynthesis pathway, is emerging as an important regulator of plant metabolism and development. T6P levels are potentially modulated by a group of trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) homologues. In this study, we have isolated 11 TPS genes encoding proteins with both TPS and TPP domains, from rice. Functional complement assays performed in yeast tps1 and tps2 mutants, revealed that only OsTPS1 encodes an active TPS enzyme and no OsTPS protein possesses TPP activity. By using a yeast two-hybrid analysis, a complicated interaction network occurred among OsTPS proteins, and the TPS domain might be essential for this interaction to occur. The interaction between OsTPS1 and OsTPS8 in vivo was confirmed by bimolecular fluorescence complementation and coimmunoprecipitation assays. Furthermore, our gel filtration assay showed that there may exist two forms of OsTPS1 (OsTPS1a and OsTPS1b) with different elution profiles in rice. OsTPS1b was particularly cofractionated with OsTPS5 and OsTPS8 in the 360 kDa complex, while OsTPS1a was predominantly incorporated into the complexes larger than 360 kDa. Collectively, these results suggest that OsTPS family members may form trehalose-6-phosphate synthase complexes and therefore potentially modify T6P levels to regulate plant development.

Journal

Plant Molecular BiologySpringer Journals

Published: May 20, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off