Analysis of the technological characteristics in fabricating SOI MEMS transducers

Analysis of the technological characteristics in fabricating SOI MEMS transducers With the ongoing progress in micro- and nanoelectronics, the technology of fabricating siliconon- insulator (SOI) structures is being increasingly applied in industrial processes. SOI structures have become a genuine breakthrough in micro- and nanoelectronics that have opened a real possibility of producing transistors and circuits with a channel length of up to ∼20 nm [9]. The high mobility of the charge carriers in the strained SiGe layers and the possibility of stimulating radiation in the terahertz frequency range of electromagnetic waves have secured an important place for SiGe/Si heterostructures in modern electronics and silicon optoelectronics [6]. The nc-Si/SiO2 layer is regarded as a promising material for designing storage elements [10] and silicon-based light-emitting systems. In recent years, various MEMS devises and transducers of mechanical quantities (pressure sensors, microgyroscopes, and microaccelerometers) were designed based on SOI structures. The continuous improvement of the technological processes, which have been actively introduced in the field of navigation systems, aerospace engineering, and other high-tech industries, is of paramount importance for fabricating highly reliable quality products. Nonetheless, researchers and production engineers face the problem of reducing the level of mechanical stresses and other defects that can appear in the technological process when fabricating SOI structures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Analysis of the technological characteristics in fabricating SOI MEMS transducers

Loading next page...
 
/lp/springer_journal/analysis-of-the-technological-characteristics-in-fabricating-soi-mems-tPp5aQPIcw
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739716020086
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial