Analysis of the entry mechanism of Crimean-Congo hemorrhagic fever virus, using a vesicular stomatitis virus pseudotyping system

Analysis of the entry mechanism of Crimean-Congo hemorrhagic fever virus, using a vesicular... Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne disease causing severe hemorrhagic symptoms with a nearly 30 % case-fatality rate in humans. The experimental use of CCHF virus (CCHFV), which causes CCHF, requires high-biosafety-level (BSL) containment. In contrast, pseudotyping of various viral glycoproteins (GPs) onto vesicular stomatitis virus (VSV) can be used in facilities with lower BSL containment, and this has facilitated studies on the viral entry mechanism and the measurement of neutralizing activity, especially for highly pathogenic viruses. In the present study, we generated high titers of pseudotyped VSV bearing the CCHFV envelope GP and analyzed the mechanisms involved in CCHFV infection. A partial deletion of the CCHFV GP cytoplasmic domain increased the titer of the pseudotyped VSV, the entry mechanism of which was dependent on the CCHFV envelope GP. Using the pseudotype virus, DC-SIGN (a calcium-dependent (C-type) lectin cell-surface molecule) was revealed to enhance viral infection and act as an entry factor for CCHFV. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Analysis of the entry mechanism of Crimean-Congo hemorrhagic fever virus, using a vesicular stomatitis virus pseudotyping system

Loading next page...
 
/lp/springer_journal/analysis-of-the-entry-mechanism-of-crimean-congo-hemorrhagic-fever-LhuqFb8mci
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-016-2803-1
Publisher site
See Article on Publisher Site

Abstract

Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne disease causing severe hemorrhagic symptoms with a nearly 30 % case-fatality rate in humans. The experimental use of CCHF virus (CCHFV), which causes CCHF, requires high-biosafety-level (BSL) containment. In contrast, pseudotyping of various viral glycoproteins (GPs) onto vesicular stomatitis virus (VSV) can be used in facilities with lower BSL containment, and this has facilitated studies on the viral entry mechanism and the measurement of neutralizing activity, especially for highly pathogenic viruses. In the present study, we generated high titers of pseudotyped VSV bearing the CCHFV envelope GP and analyzed the mechanisms involved in CCHFV infection. A partial deletion of the CCHFV GP cytoplasmic domain increased the titer of the pseudotyped VSV, the entry mechanism of which was dependent on the CCHFV envelope GP. Using the pseudotype virus, DC-SIGN (a calcium-dependent (C-type) lectin cell-surface molecule) was revealed to enhance viral infection and act as an entry factor for CCHFV.

Journal

Archives of VirologySpringer Journals

Published: Jun 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off