Analysis of the Distribution of Triticum timopheevii Zhuk. Genetic Material in Common Wheat Varieties (Triticum aestivum L.)

Analysis of the Distribution of Triticum timopheevii Zhuk. Genetic Material in Common Wheat... The database of the world gene pool of wheat was scanned by pedigree and the participation of genetic material from T. timopheevii in the creation of 3088 varieties of common wheat was established. The spatial and temporal dynamics of the propagation of these varieties was studied. Using the analysis of pedigrees, a diversity of T. timopheevii donors was studied. The specificity of donors of the genetic material T. timopheevii for the regions of wheat breeding was established. The main source of resistance genes for most varieties is accession D-357-1 from the Georgian variety-population of Zanduri. This significantly reduces the diversity of the genetic material of T. timopheevii used in wheat breeding. In 369 varieties and 184 lines, the genes for resistance to pathogens from T. timopheevii were identified. The genes of T. timopheevii are distributed mainly in winter varieties, as well as spring varieties sown in autumn. The value of donors as sources of T. timopheevii genes is ambiguous, despite the fact that most of them come from the same D-357-1 accession. The Sr36 gene is most commonly found in the United States, Western Europe, and Australia; it was transferred from the Wisconsin-245 line through Arthur or TP-114-1965a. The Pm6 gene is distributed in Western Europe; it was transferred from the pre-breeding line Wisconsin 245/5*Cappelle-Desprez//Hybrid- 46/Cappelle Desprez. The gene Lr18 is more common in the United States; it was transmitted by the Blueboy or Vogel 5 varieties from the Coker-55-9 line. The extremely limited set of genes for resistance to pathogens from T. timopheevii used in commercial varieties and the specificity of their geographical distribution are possibly associated with the uniqueness of the G subgenome and plasmon in this species, its low potential for plasticity, and tolerance to drought. In addition, the imperfection of the methods of pre-breeding and recombination breeding prevents the elimination in translocation of close linkage of target genes with undesirable ones. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Analysis of the Distribution of Triticum timopheevii Zhuk. Genetic Material in Common Wheat Varieties (Triticum aestivum L.)

Loading next page...
 
/lp/springer_journal/analysis-of-the-distribution-of-triticum-timopheevii-zhuk-genetic-0ZvY0NcE1P
Publisher
Pleiades Publishing
Copyright
Copyright © 2018 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795418020126
Publisher site
See Article on Publisher Site

Abstract

The database of the world gene pool of wheat was scanned by pedigree and the participation of genetic material from T. timopheevii in the creation of 3088 varieties of common wheat was established. The spatial and temporal dynamics of the propagation of these varieties was studied. Using the analysis of pedigrees, a diversity of T. timopheevii donors was studied. The specificity of donors of the genetic material T. timopheevii for the regions of wheat breeding was established. The main source of resistance genes for most varieties is accession D-357-1 from the Georgian variety-population of Zanduri. This significantly reduces the diversity of the genetic material of T. timopheevii used in wheat breeding. In 369 varieties and 184 lines, the genes for resistance to pathogens from T. timopheevii were identified. The genes of T. timopheevii are distributed mainly in winter varieties, as well as spring varieties sown in autumn. The value of donors as sources of T. timopheevii genes is ambiguous, despite the fact that most of them come from the same D-357-1 accession. The Sr36 gene is most commonly found in the United States, Western Europe, and Australia; it was transferred from the Wisconsin-245 line through Arthur or TP-114-1965a. The Pm6 gene is distributed in Western Europe; it was transferred from the pre-breeding line Wisconsin 245/5*Cappelle-Desprez//Hybrid- 46/Cappelle Desprez. The gene Lr18 is more common in the United States; it was transmitted by the Blueboy or Vogel 5 varieties from the Coker-55-9 line. The extremely limited set of genes for resistance to pathogens from T. timopheevii used in commercial varieties and the specificity of their geographical distribution are possibly associated with the uniqueness of the G subgenome and plasmon in this species, its low potential for plasticity, and tolerance to drought. In addition, the imperfection of the methods of pre-breeding and recombination breeding prevents the elimination in translocation of close linkage of target genes with undesirable ones.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Mar 12, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial