Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain

Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation... APETALA1 (AP1) of Arabidopsis thaliana is a transcription factor controlling flower development. AP1 is a member of the MADS (MCM1, AGAMOUS, DEFICIENS, SRF) superfamily, which plays important roles in differentiation in plants and animals. MADS domains, which function most importantly in DNA binding, are found in all major eukaryotic kingdoms. In plants, MADS domain-containing proteins also possess a region of moderate sequence similarity named the K domain, which is involved in protein-protein interaction. Little is known about the function of a third, highly variable, domain designated the C domain, as it resides at the C terminus of the MADS proteins of plants. Here we report that the C-terminal domain of Arabidopsis thaliana AP1 and its homologues perform a transcriptional activation function. The C-terminal region of AP1 is composed of at least two separable transcriptional activation domains that function synergistically. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain

Loading next page...
 
/lp/springer_journal/analysis-of-the-c-terminal-region-of-arabidopsis-thaliana-apetala1-as-Fie7X05iyK
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006273127067
Publisher site
See Article on Publisher Site

Abstract

APETALA1 (AP1) of Arabidopsis thaliana is a transcription factor controlling flower development. AP1 is a member of the MADS (MCM1, AGAMOUS, DEFICIENS, SRF) superfamily, which plays important roles in differentiation in plants and animals. MADS domains, which function most importantly in DNA binding, are found in all major eukaryotic kingdoms. In plants, MADS domain-containing proteins also possess a region of moderate sequence similarity named the K domain, which is involved in protein-protein interaction. Little is known about the function of a third, highly variable, domain designated the C domain, as it resides at the C terminus of the MADS proteins of plants. Here we report that the C-terminal domain of Arabidopsis thaliana AP1 and its homologues perform a transcriptional activation function. The C-terminal region of AP1 is composed of at least two separable transcriptional activation domains that function synergistically.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off