Analysis of the Black-Sea climatic fields below the main pycnocline obtained on the basis of assimilation of the archival data on temperature and salinity in the numerical hydrodynamic model

Analysis of the Black-Sea climatic fields below the main pycnocline obtained on the basis of... We study model climatic temperature and salinity fields and the fields of currents in the 350–1000-m layer. The following specific features are revealed: Colder waters are observed in the regions with anticyclonic vorticity. At the same time, warmer waters are detected in the regions with cyclonic vorticity. This temperature effect can be explained by the elevation of temperature with depth below the main pycnocline. In the region of the Sevastopol anticyclone, at depths greater than 500 m, we observe a zone of cyclonic rotation of waters. Near the Caucasian coast, in the region of Gelendzhik, we reveal a narrow jet current existing at a depth of 350 m from March till July. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

Analysis of the Black-Sea climatic fields below the main pycnocline obtained on the basis of assimilation of the archival data on temperature and salinity in the numerical hydrodynamic model

Loading next page...
 
/lp/springer_journal/analysis-of-the-black-sea-climatic-fields-below-the-main-pycnocline-eXpmDq0TuF
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media, Inc.
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1007/s11110-009-9034-x
Publisher site
See Article on Publisher Site

Abstract

We study model climatic temperature and salinity fields and the fields of currents in the 350–1000-m layer. The following specific features are revealed: Colder waters are observed in the regions with anticyclonic vorticity. At the same time, warmer waters are detected in the regions with cyclonic vorticity. This temperature effect can be explained by the elevation of temperature with depth below the main pycnocline. In the region of the Sevastopol anticyclone, at depths greater than 500 m, we observe a zone of cyclonic rotation of waters. Near the Caucasian coast, in the region of Gelendzhik, we reveal a narrow jet current existing at a depth of 350 m from March till July.

Journal

Physical OceanographySpringer Journals

Published: Jul 18, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off